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Abstract

Because of decreasing product lifecycles, cost of obsolescence and stock-outs for the final
consumers, the value of time in maritime transport is under permanent scrutiny. Time is a
determinant factor in the logistics of the globalized production. Any delay in one of the supply
chain intermediate steps can lead to bottlenecks affecting the production and/or distribution of
goods and consequently, the time needed to reach markets. Therefore, the consideration of the
time perspective is essential to any attempt of maritime logistics modelling. In this paper, a liner
ship fleet deployment (LSFD) model is applied to a set of transoceanic routes connecting the
port of Shanghai, as the only departure point in China, with several ports of the East and West
coasts of North America, simulating the weekly containerized traffic between China and USA.
The US West Coast ports act as transshipment hubs via the intermodal US rail system and/or
the maritime routes to the East coast traversing the Panama Canal. Several shipping lines
operate both the Trans-Pacific and Trans-Canal routes with different ships. The rail system is
included with specific adaptations to the railways cost structure. We calculate the trade-off
between shipping costs and transit time. Using the opportunity cost of time estimated in other
studies, we identify the optimal combination of cost and transit time in terms of generalized
costs for the importer. Our model assesses the impact of delays from various problems in the
ports of the US coast in the China-US trade using a bicriterion formulation.
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1. Introduction

The world merchandise trade is dominated by China that was in 2018 the world leading
exporter (2,487 USS$ billion) and the second importer (2,136 USS$ billion) after the United States
(WTO, 2019). Regarding the importance of maritime transport in the merchandise trade, suffice
it to say that in 2018 were loaded a total of 11 billion tons of cargo, including 3,2 billion tons
of oil and gas and 7,8 billion tons of dry cargo. Containerized traffic accounted for 24% of the
dry cargo amounting 1,88 billion tons (Unctad, 2019), highlighting the crucial role that
container shipping plays in modern supply chains.

Supply chains are -by definition- related to the geographic dispersion of different locations
(Stock et al., 2000) and the corresponding distances between them. The time needed to cover
those distances, this is, how long the transport process along the chain takes and at which cost,
are one of the main concerns of the supply chain stakeholders. With a focus on the China-US
transoceanic supply chains, we approach in this paper the problem from a twofold perspective,
the costs incurred by the transport operator and the customer preferences regarding transit time,
separating the interests of the transport operators from the customers concerns. The outcome of
our simulation is not to find an integrated management decision taken by a single decision-
maker, but to highlight the conflict between the carrier and the final customer interests.

The paper comprises a description of the liner shipping industry and an assessment of
customers’ time perception in Sections 2 and 3. Relevant literature is reviewed in Sect. 4. Sect.
5 analyses the research question that is modelled in Sect. 6. The simulation characteristics are
included in Sect. 7. In Sect. 8 the time is introduced, obtaining the corresponding results.
Section 9 is dedicated to the conclusions and possible further research.

2. Liner shipping

Although the maritime transport is a highly heterogeneous activity, the shipping industry is
mainly based on three different operational approaches: tramp, industrial and liner shipping
(Lawrence, 1972). Whereas tramp traffic (that operates to fulfill specific demands) and
industrial shipping (mainly related to in-house traffic) both work with a high grade of flexibility,
liner shipping operates on a regular basis involving fixed schedules, defined port itineraries and
publicized prices. With a strong association to the container traffic, liner shipping is a crucial
factor on the economic globalization, playing a fundamental role in the international trade as a
main component of the transoceanic supply chains. In 2018 the global containerized trade grew
at a 2.6% rate, reaching 152 million Teu’s and following the sustained growth tendency (5.8%
on average) recorded in the last 20 years (Unctad, 2019).

Liner shipping companies operate on a market structure that implies a global scheme with
prices normally made known well in advance, even when the wide scope of the shipping lines
client’s portfolio can lead to possible price agreements depending on the characteristics of each
client, especially regarding traffic volumes. Regularity and compliance with the schedule are
crucial factors in liner shipping operations and both are strongly dependent on port performance.
To plan the schedule is one the most important elements of the liners decision making process
and highlights the network-based character of the industry. Network optimization is a crucial
operational factor for the companies, involving three different categories of problems: optimal
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routing and container flow, optimal design of the network, and efficient fleet operation (Tran
and Haasis, 2015). Due to the fixed schedule and defined routing, the efficiency of the
operations of any fleet is directly linked to the number and type of ships that must be deployed
in each route to minimize the costs. This, tied to the fact that shipping companies redeploy its
fleets every 3-6 months to adapt the offer of slots to the demand (Shuaian Wang & Meng, 2012),
is the essence of the liner ship fleet deployment (LSFD) problem.

3. The role of time

Historically it has been considered that the demand for maritime transport is derived from
the demand for goods. However, the trade globalization and the preeminence of the global
supply chains has led to consider that the demand for maritime transport is not only a
consequence of the necessity of goods, but an integrated process in which how the customer
receive those goods in terms of time and cost, plays a role too (Panayides, 2006). Time along
the supply chain arises then as one of the main dimensions in the process of getting the goods
from the producers to the hands of the final consumers. As a natural consequence, time to reach
the market strongly influences trade flows, acting either as a trade barrier or affecting trade
volume (D. L. Hummels & Schaur, 2013). How time acts as a trade barrier can be referred to
three dimensions of time: lead time, just in time and time variability. In uncertain demand
environments a long lead time -strongly related to transport time in many cases- can have a
negative influence on the stock levels leading to either run outs or oversupplies depending on
the demand estimations. Time variability on the other hand, is strongly constrained by the cost
of the buffer stocks especially when it comes associated to just in time systems, compromising
the competitiveness of a supplier even if it is able to deliver goods in a short time (Nordas,
Pinali, & Grosso, 2006).Time as a trade cost has been studied among others by (D. Hummels,
2001) who found -using data of a period of 25 years- a 16% tariff rate for the average time (20
days) of imports to USA.

4. Relevant literature

Containership routing and scheduling problems at the strategic, tactical and operational
planning levels are reviewed by Meng et al., (2014), including a detailed evaluation of papers
regarding fleet deployment models at the tactical level. Liner shipping is a network-based
industry, therefore, network decisions play an important role for the liners operation managers.
Tran and Haasis, (2015) conducts a literature survey dealing with network optimization
decisions in container liner shipping dividing the problem in three main categories: container
routing, fleet management and network design. Liner ship fleet deployment (LSFD) have been
extensively studied in the last years. Wang and Meng, (2012) emphasize the importance of
transshipment in the LSFD problem. They propose a problem formulating a MIP model in
which any amount of transshipment operations is permitted in any port. The number of
transshipped containers is implicitly represented by origin-based container flow variables
substantially reducing the number of required variables. An extended formulation of this model
is applied to the numerical simulations of this paper. Meng and Wang, (2012) treats the dual
problem linking the tactical level fleet deployment problem to the operational level container



routing problem. Wang, (2013) incorporates to the dual problem additional elements as slot-
purchasing, type of containers and ships and empty containers repositioning, developing a
MILP model including these elements, relaxing the number of transported containers as
continuous variables. A fleet deployment problem involving cargo transshipment, multiple
container routing options and uncertain demand is proposed by Wang and Meng, (2010),
formulating the problem as a stochastic program with an objective function maximizing the
expected profit. Initially a sample average estimate is derived from a random sample in order
to approximate the objective function, solving then the resulting deterministic program,
repeating the process with different samples until a candidate solution is obtained. The same
type of problem is proposed by Meng et al., (2012) but including in the deployed fleet not only
the liner owned ships but charters ships from other liners.

The existing mathematical models for the treatment of the container liner fleet deployment
(CLFD) problem are reviewed by Wang and Meng, (2017), including container transshipment
and routing, uncertain demand, empty container repositioning, ship sailing speed optimization
and ship repositioning. In that review, fleet deployment with container transshipment and
routing models are extensively analyzed, including path-based and origin-destination-link-
based fleet deployment models. The origin-link-based fleet deployment model -used in this
paper- is equally examined, highlighting the advantage of this model regarding the number of
flow variables which is one order of magnitude smaller than in the O-D-link based model.

5. Research question

We analyze the containerized maritime traffic China-USA, combining a maritime and a
railway network, considering the later as an extension of the former one. The objective is to
minimize the operational costs of both the liner and railway fleets as well as the total transport
time required. This bicriterion formulation implies a tradeoff between cost and time: sea
transport is cheaper than rail but slower. If the consumer perceives time as an important factor,
will be prone to pay more using the rail from coast to coast. On the other hand, if the cost is a
priority, sea transport will be the preferred choice. The whole combined network is considered
-regarding the costs- as operated by the same liner shipping company, turning the freight rail
rates into liner internal costs. Port delays and /or disruptions add additional constraints to the
problem.

The deployment of the fleet of a liner shipping company rises the LSFD problem. In the
present work, that problem is formulated as a mixed-integer programming (MIP) problem
(Shuaian Wang & Meng, 2012) including transshipment. Implicit container flow origin-based
variables are used. To make compatible the rail costs with the maritime operations the costs of
the rail system are adapted to the shipping liners cost structure. In a first step we carry out a
numerical simulation including a single port in China, ports of the US East and West coasts and
several US railway nodes as well as the two ports on both sides of the Panama Canal. In a
second step we introduce the transporting time.



6. Model
A liner container shipping company operates a network (set R) of ship routes r € R, serving
on a weekly basis a defined set of ports p € P. A ship route is represented by its port rotation:

Pr1 2 D2 2 " 2 Prn, ™ Pr1 [1]

For the route R, the total number of ports of call is N,. (i = 1, 2, ..., N,.), the ith port of call is
pri and I, = {1, 2, ..., N,.} is the set of the port indices, defining I,., < I, as the set of port indices
referred to a specific port p € P. The routes are cyclical (p, N, +1:= pr1) and the voyage between
the ports p,; and p, ;41 1s denoted as the /eg i of the ship route r € R. This leg can be defined by
the pair of consecutive ports (p,;, Pr,i+1), i €Iy .

The containers -reflected in the problem as twenty equivalent units (TEU’s)- can be loaded,
unloaded and transshipped at any port p € P with the following charges (USD/TEU):

¢, : Container transshipment cost at port p € P
Cp : Container loading cost at port p € P
¢, : Container discharging cost at port p € P

To be noted that for most of the port operators and in order to encourage transshipment
operations, ¢, < ¢, + &,. The number of containers d,q (TEUs/week) transported between each
pair of origin o e P and destination d € P ports is considered as the input for the fleet
deployment problem. The liner shipping company deploys a fleet (set J9) of ships (either all of
them owned or part chartered-in) of type v € 9 with the following attributes:
cP":  Fixed operating costs (USD/week) of a ship type v € 9. This cost doesn’t depend on
the number of voyages and includes the cost of the stores, lubricants, fuel for the auxiliary
power plant, maintenance, repair, crew and administration.

cber: Berth occupancy charges (USD/h) at port p € P for a ship v € 9.

Cap,: The maximum capacity (in TEU’s) of a ship v € 9

NJW™:  The number of ships of type v € ¥ owned by the liner.

N The maximum number of ships of type v € ¥ chartered by the liner.
ci*: Chartering-in price (USD/week) of a ship type v € 9.
cout: Chartering-out profit (USD/week) of a ship type v € 9, (2%t < ci*, v € 9).

Constraints like the ports and/or canals’ physical or geographical characteristics prevent
some types of ships from being deployed on some routes. Consequently, a sub-set 9, < 9 is
defined for the candidate ships that can be deployed on the route r € R. For operational reasons,
all the ships deployed on a route r € R are of the same type v € 9,- and all of them sail at the
same speed. To maintain the schedule, the number of ships to be deployed on a route is
dependent on the round-trip time (sailing time plus port operations time). The sailing time -
including the pilot time necessary for port entrance and departure- of a ship type v € 9,
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deployed on a leg of a route r € R is denoted by Tff;x, defined by its sailing speed that is an
input of the model. The time that a ship is berthed for container handling is the port operations
time. It is related to the efficiency of the quay cranes at each port, that is the main factor
influencing the number of handled containers. Thus, for a ship v € 9, the average time needed
for loading/unloading one TEU at a port p € P is defined by t,,, (h/TEU). Provided that the
round-trip time of a route depends on the containers handled at the ports of the route, the number
of ships (denoted by m,.) deployed on route r € R necessary to maintain a regular service is a
decision variable. The LSFD problem is to determine the type and number of ships that a liner
shipping company must charter in and out, the number of ships that must be deployed in the
served routes and the number of transshipped containers at the different ports of the network to
satisfy the weekly container demand at them, minimizing the total weekly cost. This cost
comprises for m, ships of type v €9 deployed on a ship route r € R, the chartering and
container handling costs plus the operating costs, that can be divided in three parts: the ship
related costs symbolized by m,.c,’ (USD/week), the voyage costs represented by cf,,ix
(USD/week) -including the fuel cost and the different charges at ports and canals- and the
berthing costs, depending on the time berthed and port berthing rates. To model the LSFD
problem the authors use the following vector of decision variables:

X = (nll,n, n9%t, m,., xrv,éfi,ffi,fr‘ﬂr eR,ved,iel,,oeP,deP,o+ d) [2]
Where,

ni*: Number of chartered in ships of type v € 9

n9*t: Number of chartered out ships of type v e 9

m,: Number of ships deployed on route r € R

X+ Binary variable; 1 if ship route r € R is deployed with ships of type (v € 9, ); 0 otherwise

2%:  Number of containers (TEUs/week) originating from port o € P and loaded at the ith
port of call on ship route R

Z%:  Number of containers (TEUs/week) originating from port o € P and discharged at the
ith port of call on ship route R

f%:  Number of containers (TEUs/week) originating from port o € P and stowed on board

of ships sailing on the ith leg of r € R

Given the vector x the problem is formulated as a mixed-integer nonlinear problem. The
following vector is added:

R = (M, Zyip |7 € R, v €0;) [3]

where,
m,,. Number of ships of type v e 9, deployed on the route r e R
Zqp. Total number of containers handled in a ship v € 9 at the ith port of the route r
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Thus, the problem is transformed into a mixed-integer linear programming model
comprising the costs related to the ships in operation, the voyage costs, the cost of berthing, the
transshipment costs and the handling cost, plus the chartering-in costs and the chartering-out
profits that in our model are eliminated. To consider the costs of sailing through the Panama
Canal we define two new sub-sets: R, € R and I,.. < I. R, isthe set of routes including the Canal
and I,.. is the set of port indices of the last port of call before the Canal transit in the route r € R...
In compliance with the Canal rules, a tariff c£%"% is applied to the number of TEUs on board
the ships (f,3| r € R, i € I,.¢), this is, to the number of containers transiting the Canal; a tariff
ccgnalv s equally applied to the ships transiting the Canal according to their capacity in TEUs.
For the rail routes, a new sub-set R,; € R is defined. The land route distances are expressed in
nautical miles (n.m.) and the sailing and running speeds in n.m./h (knots). Due to the different
nature of the ship and rail networks, all the rail costs are integrated in a single cost related to
the rail voyage. Therefore, fixed operating costs of the trains, berthing costs and the handling
and transshipment costs are not included in the rail network. The remaining cost is a rail specific

fixed voyage cost (cfém | re Ry, v ED,).

For the decision vectors [2] and [3] the minimum total weekly cost TC’(x,X) of a joint group
of liner shipping companies and rail operators, deploying m,, ships and trains of type v e 9,,
on the routes r € R, to attend a weekly demand d,4, is:

minTC'@®) = ) > (myuef” + 1)
X, X

T€R veld,
fixrl canalc fo canalv
+ Z Crv  Xrv + Cri f ri + Criv Xry
r€e Ry VEY, T€Rc i€l 0 T€Rc VEDy I€ly,

ber .
* 2,0, ), Bty

T€R i€l ve,

+%Zc‘p Z ZZ(ZA%‘FZ%)—ded_ZdOP

peP T€Rp i€lyy OEP deP o€P
+ z Z(éo + 6d) dod
0€P deP
S.t.
Zxrvzl; VreR [4]

ved,
A round trip normally does not take more than 15 weeks. we can set M;=15 and M, =
15weeks x 168 h/week = 2520 h. The sailing time (h) of a ship v on the route » (including

standby time for pilotage at the ports) is referred to as rf,ﬁx :
My, < Myxpy; VreR; Vved, [5]
168m,,, + My(1 — xp) = T:;x + Z tp,vZriv [6]
iel,



The number of containers transported on each leg of each route is constrained by:

Zfr‘} — Z Cap,x,, <0; (VreR; Viel,) [7]
ved vel,

Flow conservation at each port of call:

frica+ 2 =f% +2Z%; VreR; Viel;VYoeP [8]
Z Z(Z'?i_ 29) = dyy; VoeP;VdeP [9]
T€Rg i€l g

Maximum number of handled containers z:

Zyiy < M3Xp, ; VT €R; Viel,; Vve 9, [10]

lriw A My(L =) = ) (G200 5 VreR; Vieh; woes,  [11]
0€P

M; = M, =2max {Cap, } Yved
No return to a port of the containers originating from that same port:

fri=0; VreR; Viel; 0=pri [12]
Containers are not discharged at a port if their origin is the same port:

72=0;, VreR; Viel,; o=py, [13]
Decision variables non-negativity and integer attributes:

X €{0,1; m,, €ZT U {0}; VreR; Vved, [14]
22 =0, 27 =20; f;7 =0 VreR; Viel,; YoeP [15]
Zripy 2 0; VreR; Viel,; Yved, [16]

7. Simulation data, parameters and characteristics
A stylized network of the US railway system (Fig 1) is added to the network of maritime
routes:

r24 r25‘----> r26<E>

Figure 1. Rail routes

The simulations are carried out with a total export/import traffic China-USA of 194.108
Teu’s/week transported at different sailing speeds, mimicking the real trade between China and
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USA (Jan-Dec 2017) using data from the USA Census Bureau (https://usatrade.census.gov/).
Table 1 displays this weekly demand distributed by ports/ramps:

Ports SEA | OAK | LAX | HOU | MIA | ORF | NYC | CHI | ATL
Export SHA 5200 | 20546 | 20546 | 17082 | 4347 | 9731 | 21304 | 16639 | 14789
Import SHA 5635 | 9157 | 9157 | 8303 | 2076 | 7535 | 8333 | 6474 | 7254

Table 1. Weekly demand (Teu’s). Total demand :194.108

The traffic demanded or exported by each state is grouped in 8 groups of states and
proportionally assigned to the nearest port, except for the group of California that is assigned
to two ports (OAK and LAX). The ports at both ends of the Panama Canal (BLB and MIT) are
included only as transshipment ports (cero demand). Five types of ships are considered with
different capacities plus a train type assimilated to a ship in Table 2:

Ship Code vl v2 v3 v4 v5 v6
Type Ship | Ship | Ship | Ship Ship Train
Capacity (TEUs) 5000 8000 | 10000 | 12000 18000 5600
Considered speed range (Knots) 20-24 | 20-22 | 18-22 | 16-18 16 40
Fixed oper. cost ¢,””” (USD/week) | 70000 | 80000 | 90000 | 105000 130000 *
Fixed call of ports cost (USD) 7000 | 9000 | 10500 | 12000 16000 *
Berthing charge (USD) 1500 | 2100 | 3100 | 3900 4900 *
Fixed time port entrance (h) 4 4 4 4 4 4
Container handling time (h/TEU) 0,01 | 0,008 | 0,008 | 0,007 0,006 0,02

Table 2. Fleet characteristics

The voyage cost per route (cf,ix) and the sailing/running time (Tf,ix) are calculated for both
the maritime (Table 3) and rail (Table 4) routes:

Ships Routes
rll rl2 rl3
vl S 1.225.600,00 |  2.602.261,82 |  1.381.390,00
oS 616,00 1.088,36 485,29
v2 ke 1.332.000,00 | 2.799.261,38 |  1.299.351,71
oS 616,00 1.088,36 524,32
v3 ke 1.242.000,00 |  2.652.168,00 |  1.355.558,18
oS 682,67 1.191,60 524,32
v4 ) 1.163.400,00 | 2.444.142.22
e 766,00 1.317,78




v5 ke 1.277.800,00
o/ 766,00

Table 3. Maritime routes (in n.m.). Voyage cost Crféx (USD) and voyage time T{;x (h)

Routes
%5 21 122 123 124 125 126
5.532 5.924 5.780 3.820 3.168 2.598
Lt 12.001 | 12.861 | 12.548 | 8.293 6.877 5.640
o/ 154,30 | 164,10 | 160,50 | 111,50 | 9520 80,95

Table 4. Rail routes (in n.m.). Voyage cost cﬁx” (kUSD) and voyage time T{;x (h)

Three maritime routes are considered:
ril SHA-SEA-LAX-OAK > SHA
ri2 SHA-BLB-NYC-ORF-HOU-MIT » SHA
ri3 OAK-BLB-MIA-HOU-MIT-LAX P OAK
The possible disruptive effects (delays) are focused at the ports of the US Pacific Coast (SEA,
OAK and LAX) and the ports of Balboa (BLB) and Colon (MIT) at the Panama Canal. The
delays are simulated changing the time required to enter the different ports. The potential
troublesome situations (as port strikes) in the US West Coast, increase the total time sailing
time and consequently the number of ships required to keep the weekly service, with the
corresponding increase of the total cost. Two situations are considered: normal operation and
delays at the three ports of US West Coast.

For rail destinations we consider a daily rail service of two “standard” trains/day with a
capacity of 400 TEUs each one. To calculate cf,ﬁxrl, the average US freight rail rate (USD/ton-
mile.) is turned into a cost per ton and nautical mile, converted into a USD/TEU-n.m. cost and
applied to an “equivalent train” Integrating that cost along each rail route, a weekly voyage cost
is obtained as in Table 5:

Average US freight rail rate (USD/ton-n.m.) 0,043
Average weight of a TEU (tons/TEU) 9

Equivalent (14 trains/week) train capacity (TEUs) 5.600
cff,xrl / equivalent train-n.m. (USD) 2.171

Table 5. Rail parameters

fix):

The maritime routes sailing time (‘L'f,fx) includes the time necessary for port entrance (¢, ;
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DWW R [17]

T€R i€l veY,

tf, llx is set to 4 h for all the ports except the Canal entrance ports. Since the model fixes the

sailing speed for all the legs of each route, the sailing speed along the Canal legs cannot be

reduced. Considering an entrance time t: llx of 20 h in the canal entrance ports, the Canal

traversing speed is compensated to mimic the real one that is always much lower than the cruise
speed.

8. Introducing time and results
To consider the time needed to ship all the containers between China and the US, two
additional terms are considered:

WYLV ST 5]

reR iel, ved, oeP

1
Trens =S g | NN N G422 = ) dpa— ) doy|  [19]

pepP T€Rp i€lry OEP deP o€P

' defines the total product of the corresponding number of containers on board on each
leg of every route » times the sailing time of that leg (in TEUs-hour). Each element of the time-
flow expression [18] consequently refers to the time that the containers are sailing the leg
Pri—1- Pri of the route » on board the ships (including the time to enter the ports). T; "
corresponds to the total product of the number of transshipped containers at each port times the
estimated average time of the transshipment operations (in TEUs-hour). Each element of the
time-transshipment expression [19] therefore refers to the time that the total number of
transshipped containers are waiting at each port for transshipment. The estimated average time
of transshipment denoted as t;*" is set to 3.5 days.

To simulate the relative importance of cost and time we add terms [18] and [19] to the
objective function. We then obtain a bicriterion function L, (x, X) representing the total cost
and the transportation time, respectively. Since the two criteria do not necessarily correspond
to a single well-defined decision maker using a unique cost of time, we use convexification of
the bicriterion function in [20] to calculate the efficient frontier for a range of preferences,
ranging from a pure cost minimization (the liner’s perspective, a, = 0, to pure time
minimization (the end customer perspective), a, = 1.

La(x%,%) = (1 — a,)TC'(x,%) + an(TE7 + TEe)  [20]

0<a,<1, n=0..10 (a,= 0.1%n)
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The efficient frontier is naturally producing a substitution between the operating cost and the
minimum time for the optimal choices. The lower the time involved in shipping the reference
number of TEUs, the higher the operating costs are. On the other hand, the only way to reduce
total operating costs consists in accepting that the containers stay longer on the way.

The described trade-off depends on many of the parameters of the model like average speed,
berth occupancy charges, port-entry times etc. Since we want to simulate the impact of delays
on the entry harbors at the West Coast of the US, the shocks considered are implemented
carrying out four consecutive sets of iterations with different port-entry times. The first set
corresponds to the normal situation: 4 hours to enter each port (including pilotage) except for
the two Panama Canal entry ports (BLB and MIT) in which -as already stated- the entry-port
time is 24 hours to compensate the slow speed during canal sailing. For the other three
consecutive sets, the entry-port time at the US west coast ports is set to 168, 336 and 504 hours,
(one, two or three weeks), remaining the rest of ports as in set one.

The efficient bicriterion frontier or tradeoff curve is illustrated in Fig 2 for four different
delay scenarios. At the benchmark curve (4 h delay), reducing the cost from 305 mill. USD
(11" iteration) to 172 M USD (10™ iteration), implies increasing total time from 85 to 89 mill.
of hours needed to transport the total amount of TEUs considered (194.108). To be noted that
this model reassigns the whole intermodal traffic shifting between train and ship, and among
different shipping routes, in each of the iterations considered. The curves show an asymptotic
behavior at the extremes. At some point the marginal cost of a time reduction will exceed the
perceived willingness to pay of the customer. Increasing port-entry times shifts these curves
away from the origin, showing that similar costs as in the benchmark can only be achieved at
the expense of an increase in the total number of hours. Similarly, keeping the benchmark time
implies an increase in total operating costs.

Beyond the general use of the formulation to address an arbitrary mix of goods, we can also
provide a numeric estimate for the average value in a realistic setting. To capture the monetary
value of the customer perception of time we draw on data in Hummels (2001) and Hummels
and Schaur (2013). Departing from the modal choice of firms between air and maritime
transport, Hummels and Schaur (2013), use timely delivery as an element identifying quality
differentiation in trade. They end up estimating a parameter that allows translating delays in
days into a price equivalent form. This parameter shows the increase in costs due to an extra
day increase in delivery time from the second day onwards. The ratio between cost and the
value of the goods shipped allows the calculation of this cost in a tariff equivalent form.

We calculate a weighted average of the tariff equivalents of all the goods imported from
China to the different US (continental) states. Following the national distribution pattern, we
calculate the composition in Tons of a “standard” Teu, resulting in a value of 44.439,4 USD.
The final composition of each TEU mimics the average yearly composition of US imports from
China. Finally, we apply the corresponding tariff equivalent (Hummels and Schaur) to the
values by component/type of good. The sum of all these values represents the value of each day
of delay by TEU (288 USD).

The resulting average tariff equivalent is 0.65%, which means that each additional day in
transit is equivalent for the importer to imposing a 0.65% ad-valorem tariff to the average value
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of each TEU. The slope of the generalized costs line is derived from this average tariff
equivalent and implies that the importer is ready to pay 288 USD for the reduction of one day
in transit. We can use now this average tariff equivalent to identify which of the feasible
combinations between sailing time and cost is optimal for the importer. This optimal
combination would correspond to the one with the minimum generalized cost for the users.

In Figure 2, the iso-cost curves for each delay scenarios are based on the empirical
assessment for the US importers’ value of time perception. This allows determining the optimal
solution as the tangential point between the iso-cost curve and the efficient bi-criteria frontiers
already derived in Figure 2. Note that the iso-cost curve is derived for the importer’s valuation
whereas the bicriterion formulation expresses the overall cost impact of liner operations, import
and export.

For the initial delays in the US East Coast ports, importers would be ready to accept higher
total delays to avoid high cost increases. However, for subsequent delays, users are increasingly
ready to support higher costs in order to lower the impact on time delays. In fact, importers are
ready to accept 5 days of extra delay and an increase is 56 USD per container when increasing
the delay from 4 hours to 1 week, but they are only ready to increase the delay in one day while
being ready to pay 341.6 USD per container when increasing the delay from one to two weeks.
To be noted that an extra week delay, ends up in a reduction of only 0.4 days with a cost increase
0f 2002 USD/Teu. This is because the higher the delays the better the option of using shipping
lines not calling the US East Coast ports. This alternative is cheaper than the train and, after
significant delays not necessarily slower.
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Figure 2. Unitary cost-time tradeoff for import.

Table 6 decomposes the impact of the different delays considered in terms of operating costs
and time opportunity cost comparing the different delays to the initial (4 hours delay for
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entrance in the ports) scenario. The opportunity cost of the increase in the average number of
days that the containers are on their way is calculated by multiplying the number of days with
the average value associated to the reduction of one day in transit (288 USD), which
corresponds to an average tariff equivalent of 0.65%. We have calculated state-specific
opportunity costs as the sum of operating cost and time opportunity cost for all states, averaging
0.65% with a minimum of 0.37% (Louisiana) and maximum of 1.16% (North Dakota).

In Table 6 we display the increase in operating costs and the extra delay in days per TEU for
each of the delay scenarios. The different increases in the operating costs represent changes
between 6,36% and 67.39%. These costs should be confronted by the shipping companies to
the costs of solving the origin of the delays, in cases like strikes or other operational or
administrative problems at the ports. We obtain the opportunity cost of the increase in days
multiplying the extra delay in days by the average opportunity cost per day (288 USD).

Delay Operating cost Increase Opportunity cost Total
(weeks) impact in days impact generalized cost
1 56,66 4,75 1.368,06 1.424,73
2 398,29 5,85 1.685,46 2.083,75
3 600,32 6,24 1.796,57 2.396,89

Table 6. Increases in cost (USD/TEU) associated to the different delays (weeks) considered

Although there is no direct internalization of these costs by the shipping companies, the
readjustments in the use of the different transport modes and routes can be considered a
response to the pressure to reduce costs and time by the clients. Should the origin of the problem
need the response of the public administration, like in cases of infrastructure damages due to
terrorist attacks or natural disasters, the decisions of the public sector should consider those
weekly total generalized costs.

9. Conclusions

The value that the customer assigns to delivery time plays an important role in the transport
mode selection, therefore, the incorporation of time in the objective function is a valuable
improvement. Shorter product lifecycles, hardened retail competition and impatience in
customer preferences are all signs of this tendency.

This double objective, minimizing operating costs and timer allows the calculation of the
trade-off between cost and delivery time. Including the time element in the objective function
of the LSFD2 we intend to obtain insights into the importer opportunity cost of delivery time
and consequently, about the decision-making process concerning the route and mean of
transport to be followed by the imported goods. Conventionally, the choice of transport mode
or transshipment has been based on cost-minimizing models, which may no longer fully
represent the demand development.

Enhancing the liner shipment modelling with time not only creates a link to the contemporary
supply chain literature, but it may also lead to improvements in the estimation of marginal
transportation flows, utilization rates of infrastructure and forecasting transport pricing.
However, we leave these avenues for further research.
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