
sustainability

Article

Conceptual Framework for Programming Skills Development
Based on Microlearning and Automated Source Code
Evaluation in Virtual Learning Environment

Jan Skalka 1,* , Martin Drlik 1 , Lubomir Benko 1 , Jozef Kapusta 1,2 , Juan Carlos Rodríguez del Pino 3,
Eugenia Smyrnova-Trybulska 4, Anna Stolinska 2 , Peter Svec 1 and Pavel Turcinek 5

����������
�������

Citation: Skalka, J.; Drlik, M.;

Benko, L.; Kapusta, J.; Rodríguez del

Pino, J.C.; Smyrnova-Trybulska, E.;

Stolinska, A.; Svec, P.; Turcinek, P.

Conceptual Framework for

Programming Skills Development

Based on Microlearning and

Automated Source Code Evaluation

in Virtual Learning Environment.

Sustainability 2021, 13, 3293. https://

doi.org/10.3390/su13063293

Academic Editor:

Michail Kalogiannakis

Received: 30 January 2021

Accepted: 5 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra,
949 01 Nitra, Slovakia; mdrlik@ukf.sk (M.D.); lbenko@ukf.sk (L.B.); jkapusta@ukf.sk (J.K.); psvec@ukf.sk (P.S.)

2 Institute of Computer Science, Pedagogical University of Krakow, 30-084 Krakow, Poland;
anna.stolinska@up.krakow.pl

3 Computing Center of the Department of Informatics and Systems, University of Las Palmas de Gran Canaria,
30, 35001 Las Palmas de Gran Canaria, Spain; jc.rodriguezdelpino@ulpgc.es

4 Institute of Pedagogy, Faculty of Art and Sciences of Education, University of Silesia in Katowice,
40-007 Katowice, Poland; esmyrnova@us.edu.pl

5 Department of Informatics, Faculty of Business and Economics, Mendel University in Brno,
613 00 Brno, Czech Republic; pavel.turcinek@mendelu.cz

* Correspondence: jskalka@ukf.sk

Abstract: Understanding how software works and writing a program are currently frequent require-
ments when hiring employees. The complexity of learning programming often results in educational
failures, student frustration and lack of motivation, because different students prefer different learn-
ing paths. Although e-learning courses have led to many improvements in the methodology and the
supporting technology for more effective programming learning, misunderstanding of programming
principles is one of the main reasons for students leaving school early. Universities face a challenging
task: how to harmonise students’ education, focusing on advanced knowledge in the development of
software applications, with students’ education in cases where writing code is a new skill. The article
proposes a conceptual framework focused on the comprehensive training of future programmers
using microlearning and automatic evaluation of source codes to achieve immediate feedback for
students. This framework is designed to involve students in the software development of virtual
learning environment software that will provide their education, thus ensuring the sustainability of
the environment in line with modern development trends. The paper’s final part is devoted to veri-
fying the contribution of the presented elements through quantitative research on the introductory
parts of the framework. It turned out that although the application of interactive features did not
lead to significant measurable progress during the first semester of study, it significantly improved
the results of students in subsequent courses focused on advanced programming.

Keywords: conceptual framework; automated assessment; source code automatic evaluation;
microlearning; introductory programming courses

1. Introduction

Understanding software and writing a program are currently frequent requirements
when hiring employees in many areas of the labour market, not only for information
technology (IT) positions. Although education systems at all levels are gradually adapting
to this requirement, many skilled pupils abandon their interest in algorithmic thinking
and/or application development as teenagers and subsequently choose careers in other
fields [1]. In addition to students with excellent IT skills, there are also students who have
recently discovered (or rediscovered) IT who decide to study IT. The technological skills of
these students are often at a very different level.

Sustainability 2021, 13, 3293. https://doi.org/10.3390/su13063293 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2211-2794
https://orcid.org/0000-0002-5958-7147
https://orcid.org/0000-0002-1657-395X
https://orcid.org/0000-0002-8285-2404
https://orcid.org/0000-0003-0979-011X
https://orcid.org/0000-0002-1713-6444
https://orcid.org/0000-0003-4494-3513
https://doi.org/10.3390/su13063293
https://doi.org/10.3390/su13063293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13063293
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13063293?type=check_update&version=1

Sustainability 2021, 13, 3293 2 of 30

As the institutions preparing IT professionals, universities face a challenging task:
how to harmonise students’ education, which focuses on advanced knowledge with respect
to the development of applications, with students’ education in cases where writing code
is a new skill. An unfortunate consequence of applying this one-size-fits-all approach to
education in cases where the students have different levels of skill and knowledge is a
natural reduction in student numbers during the first months of study. Many authors have
estimated that the student dropout rate is about 30–40% [2–4].

Although the implementation of e-learning courses in LMSs (Learning Management
Systems) or MOOCs (Massive Open Online Courses) has led to many improvements
in methodology and, especially, in supporting technology for more effective learning of
programming, the dropout rate has not decreased significantly [5,6]. However, e-learning
remains, in all likelihood, the only practical means of delivering university education,
because the established computer science educational concept at universities, based on the
combination of lectures and labs, is outdated and inefficient. MOOCs probably remain the
best choice for the mass education for students with varying levels of knowledge and skill.

This article aims to present a framework covering the effective education of university
students in programming and application development. The framework integrates and
interconnects introductory programming courses and software engineering courses. It is
based on several years of research results in the preparation of university students through
introductory and advanced programming courses.

The idea of the framework is based on involving students in the development of
the learning environment in which they are to complete their introductory programming
courses. Thus, students go through several levels throughout the educational cycle.

In the first phase, students acquire introductory skills and knowledge in an educational
environment with pre-prepared content. This phase is the most important in the education
of programmers, because its difficulty is one of the main reasons for discontinuing studies.
The scope and methodology must, therefore, be precisely defined and monitored for
continuous improvement.

In the second phase, students are involved in creating the educational content of
the environment, usually in the form of exercises. Defining tasks and rules for checking
deepens students’ knowledge and skills, improves their expressive abilities and builds
their ability to write automatic tests.

The third phase involves applying the acquired skills and knowledge in order to
solve problems and carry out projects. While creating “school” applications is already a
daunting task for some students, students with higher levels of skill require real application
development. The presented framework is based on the involvement of these students in
the software development of the educational environment.

The educational environment must meet strict criteria when implemented, but its
lifespan will be short without sustainable development. The reason for this is the constant
development of software tools, module updates for security reasons, design changes, user
habits, and supported technologies.

Assigning independent developers to the development environment is complicated at
the university level. It is much more effective to involve skilled students in the development
under the guidance of experienced developers and/or teachers.

Cooperation in the educational system can be beneficial for all participating groups:
advanced students will be involved in the development of a real application; younger
students will be able to use a growing amount of educational content while having contact
with older classmates and being motivated to move into a group of developers; the contin-
uous development of the content and software of the education platform will be ensured.

Learning programming is very stressful due to its complexity, and it is incredibly
time-consuming in the beginning. Teachers of programming often encourage students to
prepare complete programs in the early stages of the course. This approach is impractical
for many students, especially for those who have never written one. Understanding the

Sustainability 2021, 13, 3293 3 of 30

problem and transforming it into source code requires many skills and profound theoretical
background in several overlapping domains.

Therefore, particular attention is paid to the design of educational objects, activities,
and support elements in the first phase of programming learning, which are covered by
introductory programming courses. The article presents the proposed framework and
verifies the benefits of the concept applied in introductory programming courses.

The research is based on a comparison of educational outcomes measured through the
tests and projects evaluation. The goals of the research are divided into two consecutive
parts focused on students results.

• The first goal is identifying the immediate impact of interactive activities (microlearn-
ing and automated assessment) on the students’ results in the introductory program-
ming course. It verifies the contribution of implementing the framework and its
interactive elements to students’ results in learning the programming language.

• The second goal is identifying the long-term impact of interactive activities on stu-
dents’ results within the course Object Technology. It verifies the contribution of the
implementation of the introductory programming courses part of the framework, its
interactive elements, forced independence of students and skills acquired in solv-
ing automatically assessed tasks to students’ results in the application of acquired
skills (and knowledge) in an engineering course that places complex demands on
the student.

Research questions are designed to identify the benefits of applying the first part of
the framework in the short or long term:

RQ1: Does the application of the framework and the interactive elements in it (auto-
matically evaluated programs and micro-study lessons) bring significant improvements
for students in the introductory programming courses?

RQ2: Does the application of the framework and interactive elements in introductory
programming courses bring significant improvements to students’ results in advanced
programming courses?

The article has the following structure. The second part summarises the background of
the framework proposal and the related research on various aspects of the topics presented
in this article. The third part describes the conceptual model resulting from research,
the relationships between its components and finally, the research background and used
methods are introduced. The fourth section is devoted to the obtained results, which are
consequently thoroughly discussed in the next section. The conclusion section summarises
the main findings and suggests the direction of future research.

2. Related Work

The complexity of the programming learning process is the main reason for educa-
tional failures, student frustration and lack of motivation. The training of programming
experts has undergone significant changes in recent decades.

Becker and Quille [7] analysed an evolution in programming education research in
the last 50 years. They reported a shift from general and content-oriented approaches
to the student-centred approaches closely connected to the e-learning courses available
MOOCs and LMSs supplemented by the labs for practising programming languages. Skills
assessment has moved from assessing conceptual and cognitive tasks to assessing practical
skills (writing, debugging, errors identification) using automated tutoring and assessment
systems. At present, the research is focused on the prediction of success and measuring
performance and student success.

Luxton-Reily et al. [8] summarised the main teaching techniques used in introductory
programming courses as follow:

• Sorting topics—the order of content topics is one of the most common problems in
teaching programming. Its application has a significant influence on the understand-
ing of content. The object-oriented and fundamental paradigms are most often used.

Sustainability 2021, 13, 3293 4 of 30

• Writing tests—creating automatic tests as soon as possible as part of the programming
learning process. This approach focuses on students’ understanding of the code by
analysing the code by writing tests. The goal is to apply reflective programming
instead of trial-and-error programming [9,10].

• Exercises—the main tools for acquiring programming skills based on conventional
coding and focused on creative thinking, computational thinking, and sometimes
collaborative activities [11].

• Leveraging students’ prior knowledge—to use the previous experience of algorithmic-
thinking in the teaching process. Many teachers use the construction of algorithms
and analogies to connect students’ previous understanding of a familiar topic to a new
programming content topic [12,13].

• Videos—live coding [14] or content explanation [15] are the main reasons for the
recording teaching process. Videos are helpful for study gradual code creation and
repeated descriptions of demanding content.

A systematic literature review conducted by Medeiros et al. [16] identified the follow-
ing main challenges in teaching and learning programming at universities, which solution
should be implemented in any contemporary virtual environment or supporting tool for
learning programming:

• developing methods and tools for teaching programming definition and evaluation,
• scalability problems—diversity of students in classes,
• keeping students’ motivation, engagement and persistence,
• providing immediate feedback and teacher-student communication setting,
• selecting of appropriate programming language,
• curriculum, instructional sequence and students’ inadequate mathematical back-

ground were inspected only in a few research papers.

Skalka & Drlik [17] stated that building programming skills for university students
in the “classic” way is currently obsolete and often encounters a barrier built by modern
technologies. Nowadays, students reject passive time-consuming activities and prefer
immediate testing, verification, and rapid application of acquired knowledge and skills.
The students require the options to learn anytime and anywhere, not only at the university.
Simultaneously, they prefer to select the knowledge and skills their usefulness can imagine
or employ quickly.

Anindyaputri et al. [18] supposed that adaptive learning systems can improve the
learning process. The conclusion of their systematic literature review showed that adaptive
learning systems could overcome some problems encountered during learning program-
ming. On the other hand, the complexity of adaptive systems is considered their main
disadvantage, limiting their wider use and competitiveness.

Kordaki [19] and Lee et al. [20] mentioned immediate feedback to students as a crucial
element, especially for novice programmers, because its absence may result in a further
misunderstanding of programming concepts. The feedback is often complicated by several
factors naturally contained in university teaching (many students, different starting skills
and knowledge levels, different ways of understanding).

Krushke & Seit [21] considered automatically generated feedback implemented in
various frameworks and teaching support software systems as a suitable substitute for a
human teacher.

2.1. Frameworks and Models

Complex frameworks and models focused on systematic programming learning are rare.
Many studies examine methodologies, approaches, failure factors, etc. Many authors bring
expanding views to the issue and combine different pedagogical and engineering techniques.

According to a literature review by Luxton-Reily et al. [8], Bloom’s taxonomy is widely
referenced in the research of introductory programming as a standard for evaluating stu-
dents’ learning. Researchers identified the application of theories and frameworks related
to students’ progress from exploration through computational thinking, constructivist

Sustainability 2021, 13, 3293 5 of 30

learning theories to knowledge acquisition and self-regulated learning theory. Funda-
mental to the presented framework proposal is the view of cognitive load theory, which
supposes that learning gradually degrades because students have to remember more and
more items than their working memory capacity can accept.

Fuller et al. in [22] suggested the Matrix Taxonomy, which describes the framework
for assessing the learner’s computer science and engineering capabilities. The taxonomy
is based on the complexity of intrinsic characteristics of computer science and covers the
requirements of students’ ability to program. The model reflects the fact that understanding
the program and independently writing a code are two semi-independent capabilities.
Students who acquired the ability to read source code may not necessarily be able to write
new programs. Likewise, the ability to write program code does not mean the ability to
identify errors, debug programs and correct bugs. Different students use different “learning
paths”. Some students get the skills to read and debug code first, and other students start
with writing code skills instead of the skills to read or debug foreign ideas.

Malik & Coldwell-Neilson [23] presented a model using ADRI to help novices over-
come problems in choosing the right problem-solving strategies. Ali [24] introduced a
model based on a modified version of the system development lifecycle (SDLC), where
students solve tasks through the planning, coding, and output phases.

Skalka & Drlik [25] presented a conceptual model for programming learning in the
mobile platform. The authors highlighted the possibilities of using mobile learning, mi-
crolearning and other technologies that support immediate feedback. They emphasised
gamification as one of the leading motivational engines.

Alshaye et al. [26] proposed a conceptual framework for learning programming based
on problem-based learning. Their proposal guided the online instructors to effectively
organise and design teaching tasks and materials to assist students’ problem-solving and
computer programming skills. However, they did not consider some essential characteris-
tics of the novice programmers, who prefer the possibility of an environment to write their
code and receive immediate feedback and different learning paths.

Krpan et al. [27] developed an open-source framework for learning object-programming
languages based on project-based learning. This approach does not consider the character-
istics mentioned earlier and the fact that project-based learning requires other soft skills,
which can distract the students in the initial phases of programming learning.

Khaleel et al. [28] developed a gamification-based learning framework that consists
of game elements and programming learning requirements. Rigo & Diehl [29] used a
similar approach and concluded that gamification is an excellent motivational resource for
learning programming language concepts. These frameworks were narrowly focused on
one programming language and did not provide functionality, which is involved in the
framework presented in this article.

Labaj et al. [30] introduced an adaptive educational system, ALEF. It provides a
comprehensive annotation framework to support interaction and collaboration, motivat-
ing students to engage in extensible architecture, and include additional programming
languages. This system did not provide an automated assessment of source code.

Ciancarini et al. ([31]) presented a theoretical framework based on a close connection
between complex problem solving and computational thinking associated with agile value
resulting in “cooperative thinking” defined as a competence encompassed by complex
negotiation, continuous learning, group awareness, and group organisation.

Lopez-Fernandez et al. [32] defined a motivational framework composed of instru-
ments, resources, mechanics, and technologies. The results of an empirical study based on
its implementation can be summarised as follow:

• Many students perceive motivational aspects at approximately the same level, e.g.,
the desire to continue their studies, appreciate their abilities, and the hope for the
usefulness of their diplomas.

• Students increase their performance when the proposed activities are considered difficult.

Sustainability 2021, 13, 3293 6 of 30

• Students are more focused on working with their classmates and positively impacting
them, but they do not value the teacher’s recognition too much.

• Students are very sensitive to the shortcomings of their environment (physical and
virtual resources of the university, opinion of the teacher’s abilities, etc.) and value the
opportunity to grow in demanding activities. Thanks to these, they feel responsible
for the process of their learning and their academic results.

2.2. The Ideas behind the Framework

The implementation of the framework is a conceptual and technological backbone,
which is irrelevant without content. The details of the framework have been designed
following the latest psychological knowledge and research on user behaviour. Two es-
sential technological concepts provide education in introductory programming courses:
automated assessment and microlearning. While automatically evaluated source code (au-
tomated assessment) is used in learning programming since the first educational systems,
microlearning in its current form is a relatively new educational concept expanding thanks
to smartphones. Advanced and software engineering courses are based on the principles
of problem and project learning.

2.2.1. Microlearning

Students need to understand the principles, data structures, and commands while
they learn fundamental programming languages. They need to try and understand how to
create the program using simple commands into more complex structures. Based on the
cognitive load theory of Sweller [33], the use of interactive exercises with the repetition
of information in appropriate cycles will ensure the mastery of educational content. The
suitable approach is to provide information in an interactive form through micro-content
and micro-tasks.

The modern definition of microlearning says that microlearning is an activity-oriented
approach that provides learning in small parts, including information and interactive
activities to practice [17]. Microlearning offers educational content in short, well-planned
units, often through mobile applications that do not require long student attention.

Microlearning is based on the regular rotation of micro-contents and micro-activities.
Micro-content is usually presented as short text, sometimes enriched with pictures, tables,
diagrams or source codes. Micro-activities require user interactions. These can be in
programming learning, e.g., reordering program lines, filling in text or source code, a short
answer that represents the result of a program, choosing options or a multi-choice question,
and rearranging an expression or commands, etc. Micro-tasks check misunderstandings
and consolidate the knowledge gained through micro-content [34].

Obviously, due to the range of required skills and the time needed to create programs,
microlearning cannot cover the acquisition of all skills necessary to master programming.
It is served only as a tool designed to provide introductory information about topic and
activities focused on reading, debugging, and source code completion. Created activities
require the student to read and understand the written algorithm and prepare him for
the final activities, mainly writing the complete program. The exercises requiring whole
programs writing are usually placed at the end of chapters—they require the application of
information obtained through microlearning.

The typical elements of microlearning lessons (micro-content and micro-question) are
presented in Figure 1.

When creating microlearning questions, it is necessary to focus on tasks that verify
understanding of the presented content. A typical example is in Figure 1c. However, new
terms are often defined in the introductory parts of chapters, which should be memorised
to avoid misunderstandings in the following content (Figure 1b). This type of question is
needed because some students are able to write a functional program, but they are not able
to talk about it and often fail to use terminology correctly.

Sustainability 2021, 13, 3293 7 of 30

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 31

him for the final activities, mainly writing the complete program. The exercises requiring
whole programs writing are usually placed at the end of chapters—they require the ap-
plication of information obtained through microlearning.

The typical elements of microlearning lessons (micro-content and micro-question)
are presented in Figure 1.

When creating microlearning questions, it is necessary to focus on tasks that verify
understanding of the presented content. A typical example is in Figure 1c. However, new
terms are often defined in the introductory parts of chapters, which should be memorised
to avoid misunderstandings in the following content (Figure 1b). This type of question is
needed because some students are able to write a functional program, but they are not
able to talk about it and often fail to use terminology correctly.

(a)

(b)

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 31

(c)

Figure 1. Example of micro-content (a) and micro-tasks incorporated in micro-lessons implemen-
tation in the LMS Moodle. Micro-tasks are focuses on memorisation (b) or understanding (c) of the
content.

According to Žuffic & Jurcan [35], the content creators need to define and set only a
single teaching goal for one lesson. It is necessary to define a well-thought-out concept of
chapters and courses because typical micro-content is focused mainly on important con-
tent. Its ideas are based on the elimination of extra content. Considering the situations in
which micro-content is used, this requirement is natural and needs to be met.

Although microlearning brings demonstrable results in university education [36–38],
its application may not always be beneficial. The typical disadvantage of microlearning is
that its application is not suitable for large and complex tasks and is not usually ideal as a
primary and only educational strategy. Therefore, it should be used with balance and sup-
plemented with other categories of activities [35,39].

2.2.2. Automated Assessment
The central part of programming teaching is code writing, testing, debugging and

optimisation. Assessing the correctness of the code is a challenging task. Automated as-
sessment (AA) has a long history in computer science education. Efforts to automate the
evaluation of the correctness of the programs have existed since the mass teaching of pro-
gramming began (e.g., [40,41]). The demand for immediate feedback has been a part of
the programming teaching methodology since didactic research in this area started [42].

Modern principles of automated assessment are based on static or/and dynamic eval-
uation.

Static evaluation is based on checking the form, structure, content, or source code
documentation. This evaluation type is based on the validation of source code without
executing the program [43], analysing code and identifying anomalies in textual expres-
sion. Static evaluation can be enriched with rules aimed at validating the values of param-
eters defined in task assignments. Static evaluation is the first option for design-oriented
languages (e.g., HTML, CSS) or languages with simple rules (e.g., SQL).

Dynamic evaluation approaches use output results for validation on various levels:
the I/O approach and the automated tests approach.

The I/O approach is the simplest approach from the content developer’s point of
view, with minimal requirements for its capabilities [34]. The authors of the content usu-
ally define the input values and expected outputs. Validation is based on a comparison of
the values obtained from the students’ program with the values defined as expected and

Figure 1. Example of micro-content (a) and micro-tasks incorporated in micro-lessons implementation in the LMS Moodle.
Micro-tasks are focuses on memorisation (b) or understanding (c) of the content.

Sustainability 2021, 13, 3293 8 of 30

According to Žuffic & Jurcan [35], the content creators need to define and set only a
single teaching goal for one lesson. It is necessary to define a well-thought-out concept of
chapters and courses because typical micro-content is focused mainly on important content.
Its ideas are based on the elimination of extra content. Considering the situations in which
micro-content is used, this requirement is natural and needs to be met.

Although microlearning brings demonstrable results in university education [36–38],
its application may not always be beneficial. The typical disadvantage of microlearning is
that its application is not suitable for large and complex tasks and is not usually ideal as
a primary and only educational strategy. Therefore, it should be used with balance and
supplemented with other categories of activities [35,39].

2.2.2. Automated Assessment

The central part of programming teaching is code writing, testing, debugging and
optimisation. Assessing the correctness of the code is a challenging task. Automated
assessment (AA) has a long history in computer science education. Efforts to automate
the evaluation of the correctness of the programs have existed since the mass teaching of
programming began (e.g., [40,41]). The demand for immediate feedback has been a part of
the programming teaching methodology since didactic research in this area started [42].

Modern principles of automated assessment are based on static or/and dyna-
mic evaluation.

Static evaluation is based on checking the form, structure, content, or source code
documentation. This evaluation type is based on the validation of source code without
executing the program [43], analysing code and identifying anomalies in textual expression.
Static evaluation can be enriched with rules aimed at validating the values of parame-
ters defined in task assignments. Static evaluation is the first option for design-oriented
languages (e.g., HTML, CSS) or languages with simple rules (e.g., SQL).

Dynamic evaluation approaches use output results for validation on various levels:
the I/O approach and the automated tests approach.

The I/O approach is the simplest approach from the content developer’s point of
view, with minimal requirements for its capabilities [34]. The authors of the content usually
define the input values and expected outputs. Validation is based on a comparison of the
values obtained from the students’ program with the values defined as expected and correct.
The approach offers significant advantages: the definition of test cases is high-speed. Simul-
taneously, the same test cases can be defined and used for many programming languages.
The disadvantages are missing functions to verify the internal structure of the source code
(can be solved by extending static evaluation methods) and formatting problems that cause
a mismatch between expected and received output. A typical assignment of an automated
evaluation task using an I/O approach is shown in Figure 2.

Automated tests are a part of the software engineering testing concept. They are
widely used and required in the software development process. Using unit testing is one of
the necessary skills of modern programmers (JUnit, CUnit, etc.). This approach is currently
the most effective way to validate code, which tests the outputs of programs or results and
focuses on checking its elementary parts (units) as methods, procedures, algorithms, class
states, etc. The ideal goal of unit testing is to verify each part of the written code and allow
immediate repetition of testing after modifying any part of the code. The advantage of
this approach is greater flexibility, more accurate identification of errors and explanation of
mistakes to the user. The disadvantage is the more arduous preparation of the validation
itself through writing code.

Writing tests is one of the crucial activities of the presented framework to develop
students’ programming skills.

The result of automated testing should not only inform about the correctness of
the program. Users need to view syntax errors, compiler messages, and test cases with
differences between expected and obtained outputs.

Sustainability 2021, 13, 3293 9 of 30

Research that represents a measurable improvement in results using AA is not as
frequent as research to identify students’ views and attitudes towards them. Using a
suitable methodology is challenging. The authors mainly focus on perception by students
and the simplification of teacher work.

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 31

correct. The approach offers significant advantages: the definition of test cases is high-
speed. Simultaneously, the same test cases can be defined and used for many program-
ming languages. The disadvantages are missing functions to verify the internal structure
of the source code (can be solved by extending static evaluation methods) and formatting
problems that cause a mismatch between expected and received output. A typical assign-
ment of an automated evaluation task using an I/O approach is shown in Figure 2.

Automated tests are a part of the software engineering testing concept. They are
widely used and required in the software development process. Using unit testing is one
of the necessary skills of modern programmers (JUnit, CUnit, etc.). This approach is cur-
rently the most effective way to validate code, which tests the outputs of programs or
results and focuses on checking its elementary parts (units) as methods, procedures, algo-
rithms, class states, etc. The ideal goal of unit testing is to verify each part of the written
code and allow immediate repetition of testing after modifying any part of the code. The
advantage of this approach is greater flexibility, more accurate identification of errors and
explanation of mistakes to the user. The disadvantage is the more arduous preparation of
the validation itself through writing code.

Writing tests is one of the crucial activities of the presented framework to develop
students’ programming skills.

Figure 2. Example of automated evaluation of program code (I/O approach) implemented in the
presented framework in the Virtual Programming Lab in LMS Moodle [44]. The task assignment is
placed on the left side. Test cases with inputs and expected outputs are placed on the right side.

The result of automated testing should not only inform about the correctness of the
program. Users need to view syntax errors, compiler messages, and test cases with differ-
ences between expected and obtained outputs.

Research that represents a measurable improvement in results using AA is not as
frequent as research to identify students’ views and attitudes towards them. Using a suit-
able methodology is challenging. The authors mainly focus on perception by students and
the simplification of teacher work.

Alemán [45] compared two groups with and without using AA. The experimental
group scores showed that students who worked with AA gained a more reliable experi-
ence with debugging, deployment, and versioning. Still, the difference between the means
of groups was not statistically significant.

Wilcox [46] used AA as part of automatically evaluated assignments on the final
exam. The author presented significantly higher exam scores for students who used auto-
mated grading.

Figure 2. Example of automated evaluation of program code (I/O approach) implemented in the presented framework in
the Virtual Programming Lab in LMS Moodle [44]. The task assignment is placed on the left side. Test cases with inputs and
expected outputs are placed on the right side.

Alemán [45] compared two groups with and without using AA. The experimental
group scores showed that students who worked with AA gained a more reliable experience
with debugging, deployment, and versioning. Still, the difference between the means of
groups was not statistically significant.

Wilcox [46] used AA as part of automatically evaluated assignments on the final
exam. The author presented significantly higher exam scores for students who used
automated grading.

Skalka & Drlik [47] concluded that AA does not degrade students’ results, but its
significant improvement in them was not proved. More detailed research by the same
researchers [4] has shown that the use of AA in the introductory lessons of program-
ming courses led to significant student outcomes differences. The initial topics, such as
input/output, variables, data types, nested loops, arrays, exceptions, files, etc., cover essen-
tial issues. They are often the reason for students’ loss of interest in programming because of
a misunderstanding of its principles, memorisation problems, or loss of motivation [48,49].

Gaudencio et al. [50] compared the results of evaluating student solutions by teach-
ers and using a computer, concluding that the results are not significantly different.
Barra et al. [51] present a case study describing transforming a higher education program-
ming course into an automated student-centred assessment tool due to the COVID-19
pandemic. They inspected the perceptions of students with positive results.

Gordillo [52] stated that automated assessment systems are increasingly used in
higher education programming courses since the manual assessment of programming
assignments is very time-consuming. He proved, considering his literature review and
previous research, that using an automated evaluation tool was beneficial for students due
to the increased motivation and quality of their work. At the same time, it helped students
expand their practical programming skills.

Sustainability 2021, 13, 3293 10 of 30

3. Materials and Methods

The proposal of a conceptual framework covering all phases of programming learning
at universities should be connected to appropriate taxonomies. Taxonomies of educational
objectives are used worldwide to describe learning outcomes and assessment results,
reflecting student learning stages. The effectiveness of taxonomies will be fully reflected
in the design of teaching materials and assessments. Structured materials help students
advance through taxonomy levels; structured assessments help them gain more in-depth
knowledge and master the relationships between the parts of educational material. Many
universities use their frameworks to improve learning outcomes and achieve competencies
systematically [22,53,54].

The presented framework was designed to cover all parts of Bloom’s taxonomy [55]
and programming activities in Fuller’s matrix [22].

In the presented proposal, the taxonomy is used to cover mastering the programming
language and to build comprehensive knowledge and skills to allow the student to create
an actual application capable of operating in the current software environment. The use
of recent technologies requires acquiring a programming language and the mastery of
software development skills (integrated into any modern development environment) and
soft skills (communication, problem-solving, working in time, critical thinking). Bloom’s
taxonomy is applied to all phases of the process of building knowledge and skills, from a
programmer starting from zero experience to a professional ready to develop applications
in practice.

The movement between the taxonomy levels (Table 1) is ensured by the educational
content structure and personalisation of the content selection and its arrangement. Stu-
dents with better reading skills can begin their studies with tasks focused on reading and
supplementing source code, while students who have preferred writing code can solve
programming problems first.

Table 1. Revised Bloom’s Taxonomy [56].

Knowledge Cognitive Processes

1. Remember Recognising, Recalling
2. Understand Interpreting, Exemplifying, Classifying, Summarising, Inferring,

Comparing, Explaining
3. Apply Executing, Implementing
4. Analyse Differentiating, Organizing, Attributing
5. Evaluate Checking, Critiquing
6. Create Generating, Planning, Producing

Based on [17], the conceptual model should be divided into three levels:

• introductory programming courses dedicated to creating a basis of programming
language and mastering basic levels of computational thinking,

• creation of assignments for completed courses as the final phase of the study of
introductory programming courses and initial part in engineering courses,

• engineering courses focused on specific technologies (web, server, mobile, database,
IoT, etc.) based on programming languages. These courses prepare students to use
technologies and solve real problems.

Introductory programming courses should be designed to cover the first four phases
of Bloom’s taxonomy while developing computational thinking. The mapping to the
individual stages of Bloom’s taxonomy will be as follows:

• Remember—the student acquires basic knowledge using appropriate elementary
pieces of content, combined into logical units in lessons and chapters. The student’s
understanding of the presented content is verified continuously—usually after the
presentation of each information unit, its evaluation in the form of a question follows.

Sustainability 2021, 13, 3293 11 of 30

• Understand—the student completes the source code, arranges the program lines, and
determines the correct result of an algorithm (or program). They choose the correct
form of the proposed algorithm, correct the accuracy of commands, check the right
syntax, answer programming theory questions, and write simple programs evaluated
by automated methods that provide immediate feedback.

• Apply—the student solves school problems by developing his software programs. The
evaluation of source code is automated by comparing the student’s outputs with the
correct results for a set of input values. If necessary, the student can ask for instructions
(help) or directly for the author’s solution. He can discuss the ambiguities through a
discussion in the implemented social network.

• Analyse—the student solves predefined problems and programs design and data
structures for more complex tasks. The procedure and methods of a solution may
be unrestricted or limited to time or memory usage. Verification of results is usually
performed using automated testing tools.

The finalisation of these activities in these phases will prepare students to increase
their knowledge and skills in the last two stages defined in the taxonomy. The gradual
transition usually begins as part of the introductory programming courses by final activities
and continues as part of the technology courses. Activities that cover this transition aim
to create new educational content and new activities that extend the content provided to
other students. Simultaneously, they improve the skills level of advanced students.

The coverage of the “evaluation” phase maps the fifth phase of Bloom’s taxonomy as
follows:

• Evaluate—the student is involved in learning with his/her peers, creates new tasks
for the content defined in the introductory courses, and writes automated tests for
newly assigned programs. At the same time, he/she participates in discussions,
advises beginners and experienced programmers in the community, and evaluates
other students’ ideas and solutions. The created assignments will be used in the
exercises and competitions or tests in courses.

The last phase of Bloom’s taxonomy covers the ability to design, create and verify the
student’s solutions and represents the highest form and application of knowledge:

• Create—the students apply their acquired knowledge and improve their skills in some
of the modern development frameworks based on one of the programming languages
they receive. The students are involved in developing the learning environment,
creates and modifies modules in the courses of their studies and works on real-
world problems using the approach and procedures of the business environment.
Implementing this phase must include courses focused on technologies (development
of mobile applications, frontend and backend frameworks, IoT environments and
frameworks, etc.).

Evaluate and Create phases are perceived broadly in this model. The educational part
focuses on advanced skills, and knowledge is an integrated part of the educational process.
The idea of the framework is based on integrating activities focused on educational content
enrichment and system development using the latest technologies. There is no dedicated
educational content to cover these parts; this is only a part of the framework—to involve the
student in the development process of real systems, which cover students’ needs in the first
four taxonomy phases. However, it is not enough to master the programming language.
One must also know the possibilities of its application, its strengths and weaknesses, and
be able to create real deployable applications. Related skills can be acquired by students
only via the practical development of real applications. The recommended approach to
defining assignments is to use the principles of PBL, cooperative learning and cooperation
in teams.

Sustainability 2021, 13, 3293 12 of 30

3.1. The Framework Definition

The definition of the framework is designed to prepare students for lifelong learning.
The approach used simulates real-life situations on the job: the employees are given a role,
a requirement and a knowledge base. They must then develop an application or set of
applications to solve the assignment. They can discuss and communicate in teams and
with experts during development.

Figure 3 presents the framework from a pedagogical and organisational point of
view. The key actors are the students and the educational environment. Students use the
learning environment to complete their pathway from the introductory to the final phase
of Bloom’s taxonomy.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 31

Figure 3. Design of framework from a pedagogical point of view. Students’ shift across the stages, according to Bloom’s
taxonomy from top to bottom.

While lessons consist of various content and tasks, quizzes contain only assignments
of tasks and programs. The exercises offer extended content to provide practice of the
skills in the chapter to which they are assigned.

The following important learning form is competition. The competition is a subject
consisting of several learning objects described above, assigned to a pair or group of stu-
dents. Students compete and try to achieve the best time, the best score or the best solution
of randomly selected tasks or programs.

The described sections, activities and methodologies are a summary of commonly
used approaches. They are integrated into a complex form, which appears within the term
Educational environment. The educational activities cover the first four parts of Bloom’s
taxonomy and are included in the introductory programming learning part.

If the framework is to be usable as a long-term and comprehensive tool capable of
sustainable development, it is necessary to ensure:
• content validation to identify and correct problem parts in methodologies,
• content enrichment with an emphasis on practice,
• new elements added to keep audience interest,
• modernisation of the form of content provision.

These requirements can be met in line to transfer students to the higher stages of
Bloom’s taxonomy. The student’s connection to the development of the real content build-
ing and real software development in engineering courses has at least two contributions:
students are involved in real software with immediate feedback from their colleagues, and
the software system covering the framework can be modified at any time because its mod-
ules, which are developed using current technologies, can be developed and expanded
continuously per the content actualisation of the content of engineering courses. These
phases are covered as follows.

Figure 3. Design of framework from a pedagogical point of view. Students’ shift across the stages, according to Bloom’s
taxonomy from top to bottom.

Educational content is the primary and crucial part of the Educational environment. Edu-
cational content consists of basic units—information, texts, images, and source codes. These
elements represent raw but structured content that is displayed to users in learning objects.

Learning objects are represented by different types of questions, microlessons with
educational content or program tasks, and are filled by educational content. Each item
has its definition, content (question, task, assignment) and mechanisms for its validation
and scoring.

Learning objects are arranged in Learning forms. The basic structure of the lesson consists
of several learning objects. The lessons are organised into chapters that represent the topics
of programming courses. Although the content is organised into lessons, the student can
choose to read or solve any object in any chapter or lesson. Freedom is a significant feature
of the learning environment because each student’s learning pathways can be various
and different.

Sustainability 2021, 13, 3293 13 of 30

While lessons consist of various content and tasks, quizzes contain only assignments
of tasks and programs. The exercises offer extended content to provide practice of the skills
in the chapter to which they are assigned.

The following important learning form is competition. The competition is a subject
consisting of several learning objects described above, assigned to a pair or group of
students. Students compete and try to achieve the best time, the best score or the best
solution of randomly selected tasks or programs.

The described sections, activities and methodologies are a summary of commonly
used approaches. They are integrated into a complex form, which appears within the term
Educational environment. The educational activities cover the first four parts of Bloom’s
taxonomy and are included in the introductory programming learning part.

If the framework is to be usable as a long-term and comprehensive tool capable of
sustainable development, it is necessary to ensure:

• content validation to identify and correct problem parts in methodologies,
• content enrichment with an emphasis on practice,
• new elements added to keep audience interest,
• modernisation of the form of content provision.

These requirements can be met in line to transfer students to the higher stages of
Bloom’s taxonomy. The student’s connection to the development of the real content build-
ing and real software development in engineering courses has at least two contributions:
students are involved in real software with immediate feedback from their colleagues,
and the software system covering the framework can be modified at any time because its
modules, which are developed using current technologies, can be developed and expanded
continuously per the content actualisation of the content of engineering courses. These
phases are covered as follows.

Content validation for problem identification is covered by the Educational Data Collec-
tion module, which collects data about every action performed in the learning environment.
If a result is part of the user’s action (e.g., a score, duration), its value is part of the recorded
activity. The Educational Data Mining module evaluates the collected data. If a problem
is detected, the correction mechanism is initiated. The results are reviewed by a person
(artificial intelligence may be possible in the future), and a solution is proposed (e.g., cor-
rection of an incorrect assignment, change of task, addition of new content, etc.). Content
validation affects Educational content and Learning forms.

Content enrichment can be provided by the students. After completing introductory
programming courses, the students have comprehensive knowledge of programming
language and can solve school and PBL tasks. Moving students to the evaluation phase
(of Bloom’s taxonomy) means that they can independently assess the correctness of the
solutions or propose new tasks. Thanks to their acquired experience, they can identify more
demanding parts of courses and come up with tasks that will enable other students to better
practice the issue. Simultaneously, students can create automated tests designed to check
the correctness of programs submitted by other students. Their role is to communicate
with younger colleagues in simple language through discussion and lead them to the right
solution for more complex tasks.

Adding new elements is ensured by students’ activities defined in engineering courses.
The ideal enrichment with new elements consists of proposals of new types of activities that
are not implemented in the educational environment yet (e.g., selecting correct program
input, pairing input and output values etc.), and creating new tasks based on them. The
development of new types of activities is focused on building advanced programming and
engineering skills, problem-solving, creativity, responsibility and soft skills in general. The
development of new elements is complex; the students have to integrate their product into
the existing scheme and co-work with several teams.

It cannot be assumed that every new element will be successfully developed and de-
ployed. Therefore, it is appropriate to consider year-on-year improvement and upgrading
of existing activities by new students. The critical requirement of the software update

Sustainability 2021, 13, 3293 14 of 30

process is to preserve the educational content and results of users’ tasks solved in the past.
The development of system modules and related tasks prepares students for challenging
tasks implemented in practice and provides them with the significant experience highly
valued by all employers.

While the development of new elements requires their implementation into the exist-
ing infrastructure, the modernisation of content provision pushes students’ skills requirements
even higher. In addition to typically technological skills, it focuses on developing organisa-
tional and managerial skills. The students design and create their own (primary frontend)
environment to convey content to users in the form of predefined types of activities.

The authors proposed this concept due to real experience because many new tech-
nologies were introduced to the market over several years of application development.
Employers, of course, called for the development of student’s skills in the latest technolo-
gies (e.g., Vue and React frameworks replaced jQuery, Kotlin replaced Java in Android
application development, desktop application development moved to a web application
development platform, etc.).

Application development and user interface behaviour thus undergo constant changes.
The students acquire valuable skills by developing specific cases of applications in the
latest development frameworks. The Educational environment reaches into modern visual
and technological design. Teaching the fundamental programming language does not
depend on current technologies, so the actual content remains up-to-date and is offered to
more and more students through introductory programming courses.

Activities aimed at developing new elements and new applications connect the needs
of practice with the technologies used in professional work. They provide developers with
valuable feedback, and often a sense of satisfaction, motivating them to move forward.

The content of the presented framework was primarily designed to cover education in
introductory programming courses, but its scope has proved to be much broader. Indeed,
the development of elementary skills and the ability to solve problems cannot be separated
from the engineering technologies in which these skills are applied in practice. The
framework, therefore, covers educational content focused on programming languages,
software technologies and software engineering.

Because the framework definition is not adapted to specific programming languages
and technologies, the proposed model is universal and provides space for building univer-
sal or narrowly specialised implementations.

3.2. Additional Features of Framework

The idea of community learning was created as a part of a constructivist vision [57]. In
recent years, there has been a growing interest in exploiting the social nature of learning in
the virtual world through all content distribution channels (video, audio, text). Community
learning is based on the psychological and social characteristics of students —users want
to discuss, are not ashamed to explain or argue, and many of them also want to be seen.
Community members act as collaborators, trainers, audiences and knowledge creators.
However, their position in the group is, at first sight, equivalent to breaking down the
communication and social barriers of less assertive members.

The functions that can be used to support community education can be divided into
the following groups within the presented framework:

• Commenting and discussions are an integral part of all activities: commenting on tasks
and solutions, helping students solve problems, explaining problems or solutions,
discussing defined or free topics, finding topics, etc.

• Group building in the community promotes gamification and competition between
classes, universities, countries or freely created groups.

• User presentation is a standard part of social networks. Although the presentation
in this type of application is often distorted, it is possible to identify advanced users
or users whose knowledge level is similar to others. Users can open a discussion

Sustainability 2021, 13, 3293 15 of 30

with them, challenge them to a duel, or at least follow through with standard social
networking principles and functions.

• Content development is dedicated to advanced users and allows them to create
new tasks and test questions. The primary motivation of this feature is to use the
assignments and program for colleagues or students to understand the content better.
The parallel benefit is a potential for the permanent expansion of the system with new
topics, types and areas. The created tasks become part of a group of tasks intended for
practice, and other users can evaluate their quality, accuracy or meaningfulness. The
rating of tasks assignment also provides feedback for authors, providing them with
the opportunity for analysis and personal improvement.

Learning in the community brings the opportunity to create richer content and a
deeper understanding of the relationships between educational units [58,59].

Gamification is currently one of the main tools used in applications to engage the user
in application activities. The authors use gamification elements to maintain user engage-
ment and enhance the user experience in applications designed to sell products or services,
build a community or realise educational activities. Gamification with a suitable setting is
usually used as a tool to ensure internal motivation. The educational process achieves a
higher engagement by the students, which affects the quality of their understanding of the
presented information and increases their level of satisfaction. Several gamification frame-
works are implemented in various applications. They all contain gamification elements
aimed at collecting points, gaining skills and competing [60,61].

• Levelling and scoring are essential components of systems using gamification. User
behaviour in the system is monitored and evaluated, and desirable behaviour and
results are rewarded based on defined rules. Some systems positively assess the
regularity of use and reward users for daily use of the application. Depending on the
earned points, users progress to higher levels, unlock new features, or gain additional
benefits. Many systems also use a currency related to the other rules and can be used
to purchase aid or parts of the solution.

• Badge collection is an exciting addition to education systems. Badges are obtained
upon successful completion of selected tasks and goals that go beyond the main
activities. Badges reflect the skills, knowledge, preferences, interests, or behaviour of
users.

• Bonus tasks or contests are an essential part of systems that try to keep users active
even after mastering the formal content of lessons. They create a space for compar-
ing skills with other users in various disciplines, e.g., correct answers in a set of
several questions, faster programs, faster program writing, shorter source code, etc.
Competitions can be aimed at couples or a wider audience.

The advantage of a dedicated learning environment is freedom in the implementation
of tracking and evaluating functions [62]. Many user activities can help tune the system:
e.g., user behaviour in the system, time spent solving individual tasks or types of tasks,
preferences while working in the system, and tracking successes and failures in specific
kinds of tasks. The obtained information can modify the system or its content further or
further research in the learning process.

User data collection is an essential prerequisite for validating the content and learning
pathways as well as predicting user behaviour and the risks of a student’s failure.

3.3. Moodle Implementation

The implementation of essential parts of the framework was gradually developed dur-
ing 2017–2019 in the LMS Moodle environment. The first four parts of the framework were
covered by an introductory programming course, which dealt with the Java programming
language and object-oriented programming basics.

The experience gained in courses Java I. and Java II. was further developed by the
course Object Technology realised in the 3rd semester of study. This course was one of
the courses dedicated to the final phase of the framework. Teaching in this course was

Sustainability 2021, 13, 3293 16 of 30

realised without the development of modules of the educational system—students applied
the acquired knowledge and skills “only” in solving practical school tasks.

The following research, which verifies the importance and effectiveness of implement-
ing the framework, aims to identify the significance of the impact of technologies and
methodologies used in the introductory programming course and their effects on students’
skills and knowledge in solving complex problems in the Object Technologies course.

Over the three years, the Java introductory programming course authors introduced
new types of elements into the study every year and inspected their impact on student
learning outcomes.

• In 2016, teaching was carried out using methods that did not use automated assess-
ment and microlearning concepts. The students’ results achieved this year will be
considered the control group results.

• In 2017, the first AAs were added to a programming course and enabled students to
solve expanding (voluntary) tasks in Java fundamentals (first half of the course).

• In 2018, AAs became mandatory, and their number increased to more than 150 and
covered all the Java course content.

The implementation of the framework ended in 2019. The introductory programming
course was modified to the new form with content structured into micro-lessons and
micro-tasks. The gradual building of the course according to individual content elements
is shown in Table 2.

Table 2. The process of content building—the changes between years 2016–2019

Knowledge New Content Elements New Activity Elements

2016
presentations
video lectures
solved programming assignment

every-week summarisation quiz

2017 automated assessment
(procedural programming)

2018 automated assessment
(class programming)

2019 micro-lesson content micro-lesson quizzes

3.4. The Educational Content

The introductory programming course structure is based on the combination of in-
troduction to procedural programming, object-oriented programming, and graphical user
interface (GUI) development. The content is summarised in [63] and is divided into the
following chapters:

The procedural programming part lasts five weeks and consists of:

• The Java language, Output commands, Variables, Loading the values
• Conditions, Loops, Numeric data types, Other data types, String
• Nested loops and effectivity, Multiple conditionals, Exceptions
• Arrays, Array processing, Random numbers, 2D arrays
• Files

The second part is focused on the objects and class type. It lasts four weeks and
consists of:

• Introduction to object-oriented programming, Methods, Encapsulation
• Constructors, Class examples
• Static variables, Class examples II.
• Inheritance
• Polymorphism

Sustainability 2021, 13, 3293 17 of 30

The last part of the course is focused on GUI proposal and applications with a simple
GUI. This part lasts two weeks and consists of:

• basic components (button, text fields, check and radio buttons);
• components with data models (lists, tables).

The courses are taught 6 h per week: 2 h lessons, 2 h for the mandatory, and 2 h for
a voluntary programming seminar. Intensive home preparation is a matter of course—
students have to solve 15 programs during the week on average.

Practical skills and the ability to apply the acquired knowledge are verified by two
comprehensive tests focused on practical skills at the middle and end of the semester. The
complexity of the assignments did not change between the years during the performed
experiment. The tasks are designed so that only the best students can complete them in
a limited time. The aim is to realistically compare and differentiate students’ abilities on
both sides of the Gaussian curve. Based on many years of experience and experiments, the
limit for successfully completing the test was set at 40% of points.

The final exam consists of a quiz aimed at understanding the finished programs and
several basic questions of programming theory. The final exam results are not part of the
research because they do not bring new and relevant information—in programming, the
emphasis is on applying the acquired knowledge and skills in solving practical tasks.

The structure of the course Object Technology is focused on JavaEE technologies. This
course is optional, but most students choose it to prepare for project solutions in practice.
It is aimed at the practical development of applications, which corresponds to its structure:
one hour of lectures, two hours of seminars and two hours for homework activities.

The content consists of the following topics:

• JavaEE—Java Enterprise Edition
• JDBC—Java DataBase Connectivity
• Servlets—essential elements of server applications
• Sessions and user identification
• Servlet application development—actual application with thread synchronisation and

session guarding
• JPA, ORM—Java Persistent API, Object-Relation Mapping

Completing the course requires the students to finish 3–5 projects with increasing
difficulty depending on the individual topics. Students solve projects individually to master
each of the technologies at a sufficient level. A typical example is the e-shop development
with standard shopping processes and order management.

Students evaluate projects through a blind peer review and by teachers. Students are
evaluated by points obtained for solving projects. The relevant, measurable indicator is the
percentage of students’ success based on the number of points obtained that they could get
within the course.

3.5. Definition of Hypotheses

According to defined research questions, the research compares educational outcomes
measured through the tests and projects evaluation. The following hypotheses are set to
identify the significance of the contribution of new elements and methodologies to the
evaluated student outcomes.

Hypothesis 1 (H1). The application of the framework and its new interactive objects improve
students’ results in the introductory programming course.

Students’ outputs in 2016 and 2019 will be compared. While any elements used in
the presented framework were not implemented in 2016, interactive activities (automated
assessment and microlearning) were used in 2019. Simultaneously, new methodologies for
their inclusion in teaching were implemented.

Sustainability 2021, 13, 3293 18 of 30

Hypothesis 2 (H2). The application of the framework and its new interactive objects improve
students’ results in the advanced programming course.

A comparison of student group results started in 2016 and 2019 will be used to
verify this hypothesis. Because the Object Technology course is implemented in the 3rd
semester, student results from 2017 and 2020 will be compared. The hypothesis should
verify the contribution of automated assessment and microlearning to learning advanced
programming topics.

3.6. Characteristics of the Respondents

Comprehensive research has been carried out on a sample of 51–102 students per
year. Changes in society in recent years have affected the number of students admitted to
universities. The number of first-year students in the research workplace has doubled in
four years period, which significantly impacts students’ quality.

Every group consisted of computer science first-year students at the age of 18–24.
Only students who have studied the subject for the first time were included in the groups.
Students who repeated the study of programming were excluded from the research.

The entrance results of students were obtained from university applications and
reflected the grades acquired in high-school study and secondary school competitions.
These results were rated on a scale of 0–40. Only students whose number of points obtained
in entrance examinations based on high school results have reached the limit of at least
10 points were included in the research. In 2016, this limit represented the lower limit for
the admission of a student to university studies. This requirement reduced the number
of students involved in research after implementing the framework. Therefore, only
87 students met this requirement in 2019.

Nevertheless, the groups of students who take the introductory programming courses
were quite diverse every year. It was caused by the various skills acquired in secondary
schools, different programming experiences, and various computational thinking levels.
The statistical characteristics of students’ entrance results are presented in Figure 4.

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 31

for the admission of a student to university studies. This requirement reduced the number
of students involved in research after implementing the framework. Therefore, only 87
students met this requirement in 2019.

Nevertheless, the groups of students who take the introductory programming courses
were quite diverse every year. It was caused by the various skills acquired in secondary
schools, different programming experiences, and various computational thinking levels.
The statistical characteristics of students’ entrance results are presented in Figure 4.

Figure 4. Graphical visualisation of the statistical characteristics of groups inspected in an intro-
ductory programming course (points awarded in the admission procedure).

When the second hypothesis was verified, only students who completed the intro-
ductory course of programming in one year and the course of Object Technology in the
following year were included in the inspected sample. The groups reduced to 37 students
in 2017 and 36 students in 2020.

The characteristics of students based on the results of the entrance exam are shown
in Figure 5.

Figure 4. Graphical visualisation of the statistical characteristics of groups inspected in an introduc-
tory programming course (points awarded in the admission procedure).

When the second hypothesis was verified, only students who completed the intro-
ductory course of programming in one year and the course of Object Technology in the

Sustainability 2021, 13, 3293 19 of 30

following year were included in the inspected sample. The groups reduced to 37 students
in 2017 and 36 students in 2020.

The characteristics of students based on the results of the entrance exam are shown in
Figure 5.

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 31

for the admission of a student to university studies. This requirement reduced the number
of students involved in research after implementing the framework. Therefore, only 87
students met this requirement in 2019.

Nevertheless, the groups of students who take the introductory programming courses
were quite diverse every year. It was caused by the various skills acquired in secondary
schools, different programming experiences, and various computational thinking levels.
The statistical characteristics of students’ entrance results are presented in Figure 4.

Figure 4. Graphical visualisation of the statistical characteristics of groups inspected in an intro-
ductory programming course (points awarded in the admission procedure).

When the second hypothesis was verified, only students who completed the intro-
ductory course of programming in one year and the course of Object Technology in the
following year were included in the inspected sample. The groups reduced to 37 students
in 2017 and 36 students in 2020.

The characteristics of students based on the results of the entrance exam are shown
in Figure 5.

Figure 5. Graphical visualisation of statistical characteristics of groups inspected in advanced
programming course (points awarded in the admission procedure).

The primary sources used for research were:

• The list of admitted students with the number of points awarded in the admission
process used in the pre-tests.

• Students’ test results in two tests realised in the introductory programming course to
evaluate Hypothesis 1 (H1).

• The results of the evaluation of student projects in the advanced course of program-
ming (Object Technology) expressed as a percentage representing the number of points
obtained against the number of points achievable. The results of second-year students
in 2017 and 2020 are considered to evaluate Hypothesis 2 (H2).

4. Results

The differences between the results of students’ groups were inspected in the following
research. The first part compares students’ results based on H1—Improvement in the
introductory programming course based on the implementation of the framework. The
second part checks the benefits of the framework application in the advanced programming
course (H2).

4.1. H1—Improvement of Students’ Results in the Introductory Programming Course
4.1.1. Pre-Test

The first step is proof that student’s groups were well-modelled by a normal dis-
tribution. These values reflected the score obtained in the admission procedure. These
values were independent of the previous students’ experience in programming and thus
did not distort the prerequisites for mastering the course. The range of awarded points
was between 10 and 40.

The results of the Kolmogorov–Smirnov test are listed in Table 3. The data in both
groups of students do not differ significantly from a normal distribution at the 5% signifi-
cance level—the groups are well-modelled by a normal distribution.

Sustainability 2021, 13, 3293 20 of 30

Table 3. Proof of normal distribution.

Group Count Mean Median Std. dev. D (val. of K-S Test) p-Value

2016 51 25.73 26 6.96 0.10 0.59
2019 87 23.81 24 7.84 0.10 0.37

Levene’s test compared the variances of groups with the null hypothesis that both
populations (with normal distribution) have the same variances. The requirement of
homogeneity is met when the result is not significant. The results are presented in Table 4.

Table 4. The proof of the equality of variance.

Valid N1 Valid N2 Std. dev. 1 Std. dev. 2 F-Statistic p-Value

51 87 4.03 3.86 1.84 0.18

The equality of variance at the 5% significance level is not significantly different. There-
fore, it is possible to accept the assumption that the results of the group can be compared.

The last part of the pre-test is the comparison of means in groups. Because the
equality of variance is not significantly different, the Tukey test can investigate whether the
population means of groups are equal. The results are presented in Table 5.

Table 5. The proof of the equality of means.

Valid N1 Valid N2 Q-Statistic p-Value

51 87 2.03 0.15

The p-value corresponding to the Tukey HSD Q statistic is higher than 0.05, which
means that the results are not significantly different at the 5% significance level. The result
identifies comparable characteristics in inspected groups.

As a result, the research intention can be realised because of the differences between
the educational outcomes in students’ groups.

4.1.2. Post-Test

The H1 hypothesis requires a comparison of students’ results measured by two tests.
The tests were focused on the practical experience of students and consisted of several (3–5)
assignments that covered the entire content of the first or second half of the course content.

The results were collected from the LMS Moodle environment, and they did not
contain the results of students who failed.

The assumptions of normal distribution and homogeneity of variances are met. The
results of the Shapiro-Wilk test are presented in Table 6.

Table 6. Assumptions of normal distribution and homogeneity of variances.

Shapiro-Wilk Test of Normality

Group Count Mean Median Std. dev. W-Stat p-Value

2016 51 475.96 480.60 274.63 0.97 0.19
2019 87 462.43 427.22 339.07 0.91 0.00002

The data in group 2016 do not differ significantly from a normal distribution. On the
other hand, data in group 2019 are significantly different (p-value < 0.05). The histograms
of tests results are presented in Figure 6. A visual representation confirms this fact. The
means of the groups are close, but medians and standard deviations are visibly different.

Sustainability 2021, 13, 3293 21 of 30

Sustainability 2021, 13, x FOR PEER REVIEW 21 of 31

Table 5. The proof of the equality of means.

Valid N1 Valid N2 Q-Statistic p-Value
51 87 2.03 0.15

The p-value corresponding to the Tukey HSD Q statistic is higher than 0.05, which
means that the results are not significantly different at the 5% significance level. The result
identifies comparable characteristics in inspected groups.

As a result, the research intention can be realised because of the differences between
the educational outcomes in students’ groups.

4.1.2. Post-Test
The H1 hypothesis requires a comparison of students’ results measured by two tests.

The tests were focused on the practical experience of students and consisted of several (3–
5) assignments that covered the entire content of the first or second half of the course con-
tent.

The results were collected from the LMS Moodle environment, and they did not con-
tain the results of students who failed.

The assumptions of normal distribution and homogeneity of variances are met. The
results of the Shapiro-Wilk test are presented in Table 6.

Table 6. Assumptions of normal distribution and homogeneity of variances.

Shapiro-Wilk Test of Normality
Group Count Mean Median Std. dev. W-Stat p-Value
2016 51 475.96 480.60 274.63 0.97 0.19
2019 87 462.43 427.22 339.07 0.91 0.00002

The data in group 2016 do not differ significantly from a normal distribution. On the
other hand, data in group 2019 are significantly different (p-value < 0.05). The histograms
of tests results are presented in Figure 6. A visual representation confirms this fact. The
means of the groups are close, but medians and standard deviations are visibly different.

 (a) (b)

Figure 6. Histogram of test score distribution in monitored groups: (a) Test score in the group
trained without advanced elements in 2016; (b) Test score in the group of students used all ad-
vanced elements in 2019.

Therefore, a non-parametric Mann–Whitney U-test should be used to investigate
whether the results are significantly different. The null hypothesis assumes that the means
are not significantly different. The distribution of values is approximately normal. There-
fore, the z-score should be used. The values of the test are presented in Table 7.

Figure 6. Histogram of test score distribution in monitored groups: (a) Test score in the group trained without advanced
elements in 2016; (b) Test score in the group of students used all advanced elements in 2019.

Therefore, a non-parametric Mann–Whitney U-test should be used to investigate
whether the results are significantly different. The null hypothesis assumes that the means
are not significantly different. The distribution of values is approximately normal. There-
fore, the z-score should be used. The values of the test are presented in Table 7.

Table 7. Mann-Whitney U-test results.

2016 2019 Combined

Sum of ranks 3611 5980 9591
Mean of ranks 70.8 68.74 69.5
Expected sum of ranks 3544.5 6046.5
Expected mean of ranks 69.5 69.5
U-value 2152 2285
Expected U-value 2218.5 2218.5
Standard Deviation 226.71

The U-value is 2152, the Z-Score is 0.29, and the p-value is 0.77. The result is not
significant (p < 0.05). Since p-value > α, the hypothesis is accepted, the difference between
the averages of groups is not large enough to be statistically significant.

The results show that the hypothesis H1 cannot be accepted. It means that implement-
ing the framework in the introductory programming course does not lead to significant
differences in student outcomes.

4.2. H2—Improvement of Students’ Results in the Advanced Programming Course
4.2.1. Pre-Test

Students’ subsets from the groups examined in the previous hypothesis are selected
to verify the hypothesis as follows. These students have completed the optional course
in Objective Technology 12 months after starting their university programming studies.
The groups are named 2017 and 2020 because they completed the course of advanced
programming in these years. However, they are a subset of students examined in the
previous hypothesis, who started the study in 2016 and 2019.

Table 8 shows the characteristics of groups and the confirmation of the normal distri-
bution of the score of admission procedure. The range of awarded points was between 10
and 40.

Sustainability 2021, 13, 3293 22 of 30

Table 8. Proof of normal distribution (Kolmogorov–Smirnov test).

Group Count Mean Median Std. dev. D (val. of K-S Test) p-Value

2017 37 25.92 26 7.52 0.11 0.77
2020 36 25.39 25 7.71 0.12 0.67

The data in both groups of students do not differ significantly from a normal distribu-
tion at the 5% significance level—the groups are well-modelled by a normal distribution.

Levene’s test was used to assess the variances of the two groups. The difference
between the variances of all the groups is not big enough to be statistically significant. The
p-value is 0.83, [p(x ≤ F) = 0.166249], and it is possible to accept the assumption that the
group results can be compared.

The Tukey test realised the comparison of means in groups at the 5% significance level:
the p-value corresponding to the Tukey HSD Q statistic (0.42) is 0.78, which means that the
results are not significantly different.

The research intention can be realised because of the differences between the educa-
tional outcomes in groups of students can be compared.

4.2.2. Post-Test

The H2 hypothesis requires a comparison of students’ results measured by project
evaluation. Projects are solved continuously throughout the semester. The final evaluation
represents the sum of points obtained and the total number of points that could be obtained
in the course in the current semester. The results were collected from the LMS Moodle
environment. The results of the compared groups are shown in the histogram in Figure 7.

Sustainability 2021, 13, x FOR PEER REVIEW 23 of 31

Moodle environment. The results of the compared groups are shown in the histogram in
Figure 7.

 (a) (b)

Figure 7. Histogram of results distribution in monitored groups in advanced programming
course: (a) Course score in the group trained without advanced elements in 2017; (b) Course score
in the group of students used all advanced elements in 2020.

At first glance, it is clear that the data does not have a normal distribution. Evidence
of this assertion is the results of the Shapiro-Wilk test shown in Table 9.

Table 9. Shapiro-Wilk test results for students results in an advanced programming course.

Shapiro-Wilk Test of Normality
Group Count Mean Median Std. dev. W-Stat p-Value
2017 37 46.24 42.7 20.96 0.87 0.0004
2020 36 70.66 75.9 22.60 0.91 0.0050

The data in both groups are significantly different from a normal distribution (p-
value < 0.05); therefore, a non-parametric Mann–Whitney U-test will be used again to in-
vestigate if the results are significantly different.

The null hypothesis assumes that the means are not significantly different. The test
statistic Z equals −4.204568, which is not in the 95% critical value accepted range: (−1.9600,
1.9600). Value U = 284.50, is not in the 95% accepted range (488.4000, 0.02594). The p-value
is 0.000026. Since p-value < α, H0 is rejected. The difference between the means of groups
can be considered large enough to be statistically significant.

The hypothesis H1 was not rejected, and thus the application of the framework
brought significant differences in student outcomes in advanced programming courses.

4.3. Dependencies Inspection
Dependencies between the measurable indicators of groups were further analysed to

obtain a comprehensive view of the investigated characteristics of observed groups.
First, the correlations between the entrance exams results and the introductory and

advanced programming course results were examined. Subsequently, the correlations be-
tween the results of the initial programming course and the course for advanced program-
ming were investigated. Figure 8 shows graphs for each comparison, and Table 10 shows
the Pearson coefficients for all observed pairs.

Figure 7. Histogram of results distribution in monitored groups in advanced programming course: (a) Course score in the
group trained without advanced elements in 2017; (b) Course score in the group of students used all advanced elements in
2020.

At first glance, it is clear that the data does not have a normal distribution. Evidence
of this assertion is the results of the Shapiro-Wilk test shown in Table 9.

Table 9. Shapiro-Wilk test results for students results in an advanced programming course.

Shapiro-Wilk Test of Normality

Group Count Mean Median Std. dev. W-Stat p-Value

2017 37 46.24 42.7 20.96 0.87 0.0004
2020 36 70.66 75.9 22.60 0.91 0.0050

The data in both groups are significantly different from a normal distribution
(p-value < 0.05); therefore, a non-parametric Mann–Whitney U-test will be used again to
investigate if the results are significantly different.

Sustainability 2021, 13, 3293 23 of 30

The null hypothesis assumes that the means are not significantly different. The test
statistic Z equals −4.204568, which is not in the 95% critical value accepted range: (−1.9600,
1.9600). Value U = 284.50, is not in the 95% accepted range (488.4000, 0.02594). The p-value
is 0.000026. Since p-value < α, H0 is rejected. The difference between the means of groups
can be considered large enough to be statistically significant.

The hypothesis H1 was not rejected, and thus the application of the framework brought
significant differences in student outcomes in advanced programming courses.

4.3. Dependencies Inspection

Dependencies between the measurable indicators of groups were further analysed to
obtain a comprehensive view of the investigated characteristics of observed groups.

First, the correlations between the entrance exams results and the introductory and
advanced programming course results were examined. Subsequently, the correlations
between the results of the initial programming course and the course for advanced pro-
gramming were investigated. Figure 8 shows graphs for each comparison, and Table 10
shows the Pearson coefficients for all observed pairs.

Sustainability 2021, 13, x FOR PEER REVIEW 24 of 31

 (a) (b)

 (c) (d)

 (e) (f)

Figure 8. The graphs expressing the correlation between the observed characteristics and their
significance: (a) relationship between results of entrance exam and an introductory course in
group 2016 (2017), (b) relationship between results of entrance exam and introductory course in
group 2019 (2020), (c) relationship between results of entrance exam and advanced course results
in group 2016 (2017), (d) relationship between results of entrance exam and advanced course re-
sults in group 2019 (2020), (e) relationship between introductory course results and advanced
course results in group 2016 (2017), (f) relationship between introductory course results and ad-
vanced course results in group 2019 (2020).

Table 10. Pearson correlation coefficient between the characteristics of students results.

Group 2016–2017 2019–2020
entrance exam—introductory course results 0.13 0.24
entrance exam—advanced course results 0.33 0.16
introductory course results—advanced course results 0.24 0.55

Except for the correlation between the introductory course results and the advanced
programming course results in the experimental group, the analysis shows very little or
no correlation. This result indicates that the student's high school results (summarised in
the entrance exam results) do not affect or weakly affect the results achieved in program-
ming courses.

The positive correlation expressed by the Pearson correlation coefficient of 0.55
shows that the results obtained in the introductory programming courses after applying
the proposed framework positively influenced the results in the advanced programming
course.

Figure 8. The graphs expressing the correlation between the observed characteristics and their significance: (a) relationship
between results of entrance exam and an introductory course in group 2016 (2017), (b) relationship between results of
entrance exam and introductory course in group 2019 (2020), (c) relationship between results of entrance exam and advanced
course results in group 2016 (2017), (d) relationship between results of entrance exam and advanced course results in
group 2019 (2020), (e) relationship between introductory course results and advanced course results in group 2016 (2017),
(f) relationship between introductory course results and advanced course results in group 2019 (2020).

Sustainability 2021, 13, 3293 24 of 30

Table 10. Pearson correlation coefficient between the characteristics of students results.

Group 2016–2017 2019–2020

entrance exam—introductory course results 0.13 0.24
entrance exam—advanced course results 0.33 0.16
introductory course results—advanced course results 0.24 0.55

Except for the correlation between the introductory course results and the advanced
programming course results in the experimental group, the analysis shows very little or
no correlation. This result indicates that the student’s high school results (summarised in
the entrance exam results) do not affect or weakly affect the results achieved in program-
ming courses.

The positive correlation expressed by the Pearson correlation coefficient of 0.55 shows
that the results obtained in the introductory programming courses after applying the
proposed framework positively influenced the results in the advanced programming
course.

5. Discussion

The research was focused on identifying the significance of using the framework in the
introductory parts of programming learning. It compares students’ results in two phases
of study at the end of the study of the introductory programming course and after the
completion of the technological course in the third semester.

Hypothesis 1 (H1). The application of the framework and its new interactive objects improves
students’ results in the introductory programming course.

This hypothesis cannot be accepted. Students’ results based on a pair of tests covering
the course content did not show a significant difference between the group from 2016
studying according to classical blended learning method and the group in 2019, whose
study was covered by the proposed framework and its interactive activities. The difference
between the results is not significant. Even though the average of the experimental group
is slightly lower, no relationship has been identified between the entrance exam results and
the introductory course results; it is appropriate to focus on the differences in the behaviour
of groups during the semester when identifying the reasons.

Students from group 2016 continuously submitted a small number of tasks that
teachers evaluated. Most of these tasks were submitted at once. During their studies in
2019, students were forced to work continuously. The possibility of submitting programs
and studying micro-learning content was made available only for a certain period. Students
were forced to perform tasks during the semester continuously.

The approach applied in 2019 divided students into two groups during the first half
of the introductory programming course. The first test results in Figure 9 show that some
students had very poor, and some achieved excellent, results. The number of students with
average results was small. Although the results approached a normal distribution by the
end of the introductory course, there was a division between students who are satisfied
with continuous work and students who take longer to get used to continuous study in the
first half of the course. Some students dropped out early.

Although the application of the framework did not bring significant benefits in the
introductory programming course, students perceive the use of microlearning and auto-
matically evaluated program codes positively. Based on the already published results of
the questionnaire aimed at finding out the student’s attitudes [4], it can be stated that:

• 69% of users agreed that AAs help students understand educational content.
• 76% of users agreed that AAs help students to practice educational content.
• 81% of users agreed that microlearning helps students understand educational content.
• 85% of users agreed that microlearning helps students practice educational content.

Sustainability 2021, 13, 3293 25 of 30

• 73% of users agreed that microlearning could be used as the primary way of program-
ming learning.

Sustainability 2021, 13, x FOR PEER REVIEW 25 of 31

5. Discussion
The research was focused on identifying the significance of using the framework in

the introductory parts of programming learning. It compares students’ results in two
phases of study at the end of the study of the introductory programming course and after
the completion of the technological course in the third semester.

Hypothesis 1 (H1). The application of the framework and its new interactive objects improves
students’ results in the introductory programming course.

This hypothesis cannot be accepted. Students’ results based on a pair of tests covering
the course content did not show a significant difference between the group from 2016
studying according to classical blended learning method and the group in 2019, whose
study was covered by the proposed framework and its interactive activities. The differ-
ence between the results is not significant. Even though the average of the experimental
group is slightly lower, no relationship has been identified between the entrance exam
results and the introductory course results; it is appropriate to focus on the differences in
the behaviour of groups during the semester when identifying the reasons.

Students from group 2016 continuously submitted a small number of tasks that
teachers evaluated. Most of these tasks were submitted at once. During their studies in
2019, students were forced to work continuously. The possibility of submitting programs
and studying micro-learning content was made available only for a certain period. Stu-
dents were forced to perform tasks during the semester continuously.

The approach applied in 2019 divided students into two groups during the first half
of the introductory programming course. The first test results in Figure 9 show that some
students had very poor, and some achieved excellent, results. The number of students
with average results was small. Although the results approached a normal distribution by
the end of the introductory course, there was a division between students who are satis-
fied with continuous work and students who take longer to get used to continuous study
in the first half of the course. Some students dropped out early.

Figure 9. Histogram of first test results distribution in group 2019 in an introductory program-
ming course.

Although the application of the framework did not bring significant benefits in the
introductory programming course, students perceive the use of microlearning and auto-
matically evaluated program codes positively. Based on the already published results of
the questionnaire aimed at finding out the student’s attitudes [4], it can be stated that:
• 69% of users agreed that AAs help students understand educational content.
• 76% of users agreed that AAs help students to practice educational content.

Figure 9. Histogram of first test results distribution in group 2019 in an introductory program-
ming course.

Although the last statement is quite vague, and microlearning certainly fails to cover all
the programming instruction needs, the overall satisfaction of students with the framework
is high.

Hypothesis 2 (H2). The application of the framework and its new interactive objects improves
students’ results in advanced programming courses.

The hypothesis was not rejected. The use of the first four parts of the framework and
application of automatic evaluation of programs and microlearning activities demonstrate
significant benefits for students in the long-term perspective.

The Pearson correlation coefficient between the introductory programming course and
advanced course results shows the mediate dependence. The introductory course activities
and the need for continuous problem solving, testing of created programs, reading test
results, finding correct answers in micro-lessons, and other activities impacted building
knowledge, skills, and habits supporting successful mastery of the advanced programming
course (Object Technology).

This result confirmed the findings of researchers who have studied the use of AA in
higher education. They found that the services of AA positively affect building the skills
needed in advanced programming and engineering courses.

Alemán presented in [45] the results of a study performed on programming students
in the CS2 course. The experimental group score showed that the students who used AA
in their learning were more motivated to study and understood the concepts of debug-
ging, deployment, and versioning more thoroughly. This finding supports the idea that
automated assessment supports students’ skills and ability to use programming tools.

Barra et al. show in [51] that AA was perceived very positively by students. The
authors state that automated student-centred assessment systems can help students if they
are appropriately integrated into the courses teaching methods. The students said that if
the use of AA were optional, they would undoubtedly decide to use it.

According to Pieterse [64], AA has the potential to provide strong support to MOOC
participants. However, it states that AA is not in itself a comprehensive or sufficient
solution and suggests several principles for the submission and evaluation of AA:

• It is necessary to allow students to resubmit their work.
• It is impossible to expect that the outputs of students’ programs will exactly match

the specified output. It should be easy to allow variations in output formatting.

Sustainability 2021, 13, 3293 26 of 30

• It is necessary to provide qualitative feedback. If a student’s program generates an
error, the system should give text advice associated with the specific output.

• It is suitable to provide student’s statistical information of the increments they have
made. Students can be motivated by knowing what their performance is in relation to
their peers.

An important element of the improvement was probably the students’ activity, which
increased many times between 2016 and 2019. A comparison of activity in the LMS Moodle
system is shown in Figure 10.

Sustainability 2021, 13, x FOR PEER REVIEW 27 of 31

Figure 10. The activity of students expressed by the number of interactions performed in the
course during the semester—the x-axis shows the weeks of the semester (from the 1st week to the
last (14th or 15th) week of the semester). The y-axis represents the number of students’ activities
on a logarithmic scale.

An important element of the introductory course, which probably also influenced the
students’ results in the advanced programming course, was implementing discussions
about problems and reports on incorrect or difficult to understand assignments and the
subsequent debate. By discussing issues, students improve their communication skills,
formulate questions accurately and use the correct terminology. During education, a sim-
ple form of gamification was also applied. Students collected points for solved tasks and
badges for completing a weekly series of tasks.

The use of LMS Moodle to cover the activities grouped in the first four phases of the
presented framework was satisfactory. However, the idea of using LMS Moodle for the
following stages of the framework was not applicable. The development of Moodle mod-
ules requires a specific approach, the mastering of which by students is hugely time-con-
suming, and the benefits of mastering it are limited in practice.

For this reason, an independent software solution was chosen for the next application
of the framework. The system was developed and deployed in the autumn semester
2020/2021 with the content and scope used in the presented research. In the current se-
mester (spring 2020/2021), the students content creation phase will be started. In the fol-
lowing semester, these students will create system modules. PHP (Laravel) on the
backend and Vue on the frontend were selected as a development platform. This combi-
nation is more understandable for students than Moodle scripts and also provides a
broader application in practice.

6. Conclusions
In contrast to other existing frameworks, the presented framework is complex—it

covers university students’ training in using programming languages from the introduc-
tion to the development of real applications. Introductory programming courses are un-
derstood as only a part of the educational process focused on technological knowledge
and skills development. The educational environment presented in the article as the cen-
tral part of the conceptual framework is an instrument and a target of the student’s train-
ing.

The first four phases of the presented framework are elaborated very well in several
of the research studies mentioned in this article. The other two phases of the present
framework have so far only been implemented in basic terms. Tasks requiring a compre-
hensive view of the issue from students were defined and implemented. Methods based
on problem-based learning have been applied, and in the following semesters, which were

Figure 10. The activity of students expressed by the number of interactions performed in the course
during the semester—the x-axis shows the weeks of the semester (from the 1st week to the last
(14th or 15th) week of the semester). The y-axis represents the number of students’ activities on a
logarithmic scale.

An important element of the introductory course, which probably also influenced the
students’ results in the advanced programming course, was implementing discussions
about problems and reports on incorrect or difficult to understand assignments and the
subsequent debate. By discussing issues, students improve their communication skills,
formulate questions accurately and use the correct terminology. During education, a
simple form of gamification was also applied. Students collected points for solved tasks
and badges for completing a weekly series of tasks.

The use of LMS Moodle to cover the activities grouped in the first four phases of
the presented framework was satisfactory. However, the idea of using LMS Moodle for
the following stages of the framework was not applicable. The development of Moodle
modules requires a specific approach, the mastering of which by students is hugely time-
consuming, and the benefits of mastering it are limited in practice.

For this reason, an independent software solution was chosen for the next application
of the framework. The system was developed and deployed in the autumn semester
2020/2021 with the content and scope used in the presented research. In the current
semester (spring 2020/2021), the students content creation phase will be started. In the
following semester, these students will create system modules. PHP (Laravel) on the back-
end and Vue on the frontend were selected as a development platform. This combination
is more understandable for students than Moodle scripts and also provides a broader
application in practice.

6. Conclusions

In contrast to other existing frameworks, the presented framework is complex—it
covers university students’ training in using programming languages from the introduction
to the development of real applications. Introductory programming courses are understood

Sustainability 2021, 13, 3293 27 of 30

as only a part of the educational process focused on technological knowledge and skills
development. The educational environment presented in the article as the central part of
the conceptual framework is an instrument and a target of the student’s training.

The first four phases of the presented framework are elaborated very well in several of
the research studies mentioned in this article. The other two phases of the present framework
have so far only been implemented in basic terms. Tasks requiring a comprehensive view of
the issue from students were defined and implemented. Methods based on problem-based
learning have been applied, and in the following semesters, which were not described in
the article, activities aimed at the development of team problem-solving take place.

The implementation of the introduction part of the framework was in LMS Moodle.
It used quizzes for microlearning activities and Virtual Programming Lab exercises for
automatic source code evaluation. Even though the implementation of the initial stages
in LMS Moodle can be considered successful, the use of Moodle encountered system
limitations. The main restrictions are the static course structure, which did not support the
efficient display of many objects (too slow download in the user view) and complicated
work with gamification elements. Logging user activity and learning analytics, one of the
most important parts for further research, did not provide detailed information about user
behaviour. Obtaining detailed information about source code fixes by users was tedious.
The ability to customise the user’s view of the educational content was low, etc.

Implementation of the engineering parts of the framework requires in-depth knowl-
edge about the LMS system and the use of spaghetti code in PHP, which significantly
limited the possibilities of developing students’ skills. The students’ requirements proved
to be too high, as not all students can master the structure and methods used in LMS
Moodle in the third semester of study. Also, some parts of the source codes are relatively
outdated, and the creation of new modules focused only on PHP is not beneficial for current
practical training. Therefore, the use of LMS Moodle as an environment, which students
would modify within the courses of advanced programming, was consequently rejected.

The logical step for further development was to create a stand-alone, fully adaptable
system in-house that primarily supports the requirements of the framework and is based on
recent popular and widely used technologies. The development of a suitable system began
in 2019 based on the definition in [34] and is currently being deployed in a pilot phase.

The development of the new system will also consider the results achieved in research
carried out in secondary education [65] and in the gamification for this group [66] so that
the proposed system can be extended to teaching programming to younger students.

Author Contributions: Conceptualization, J.S., M.D., J.C.R.d.P. and P.S.; Data curation, J.S., M.D.,
L.B., J.C.R.d.P., E.S.-T., A.S. and P.T.; Formal analysis, J.S., L.B., J.K. and P.S.; Funding acquisition,
J.S., M.D., L.B., J.K., J.C.R.d.P., E.S.-T., A.S., P.S. and P.T.; Investigation, J.S., M.D., L.B., J.K., J.C.R.d.P.,
E.S.-T., A.S., P.S. and P.T.; Methodology, J.S. and M.D.; Project administration, J.S., M.D., J.K., J.C.R.d.P.,
E.S.-T., A.S., P.S. and P.T.; Resources, J.S., M.D., L.B., J.K., J.C.R.d.P., E.S.-T., A.S., P.S. and P.T.; Software,
J.S., L.B., J.C.R.d.P. and P.S.; Supervision, J.S. and M.D.; Validation, J.S., J.K., E.S.-T., A.S. and P.T.;
Visualization, J.S. and M.D.; Writing—original draft, J.S. and M.D.; Writing—review & editing, J.S.
and M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Commission under the ERASMUS+ Programme
2018, KA2, grant number: 2018-1-SK01-KA203-046382 “Work-Based Learning in Future IT Profession-
als Education” and the Cultural and educational agency of the Ministry of Education of the Slovak
Republic, grant number: KEGA029UKF-4/2018 “Innovative Methods in Programming Education in
the University Education of Teachers and IT Professionals”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analysed in this study. This data can be
found here: https://fitped.eu/images/datasets/data-framework.zip (accessed on 10 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://fitped.eu/images/datasets/data-framework.zip

Sustainability 2021, 13, 3293 28 of 30

References
1. Henriksen, D.; Mishra, P.; Fisser, P. Infusing creativity and technology in 21st century education: A systemic view for change.

Educ. Technol. Soc. 2016, 19, 27–37.
2. Kinnunen, P.; Malmi, L. Why students drop out CS1 course? In Proceedings of the ICER 2006—Proceedings of the 2nd

International Computing Education Research Workshop, Canterbury, UK, 9–10 September 2006; Volume 2006.
3. Tabanao, E.S.; Rodrigo, M.M.T.; Jadud, M.C. Predicting at-risk novice Java programmers through the analysis of online protocols.

In Proceedings of the ICER’11—Proceedings of the ACM SIGCSE 2011 International Computing Education Research Workshop,
Providence, RI, USA, 8–9 August 2011.

4. Skalka, J.; Drlik, M. Automated assessment and microlearning units as predictors of at-risk students and students’ outcomes in
the introductory programming courses. Appl. Sci. 2020, 10, 4566. [CrossRef]

5. Othman, J.; Wahab, N.A. The Uncommon Approaches of Teaching the Programming Courses: The Perspective of Experienced
Lecturers. In Computing Research Innovation (CRINN); Lulu: Morrisville, NC, USA, 2016; Volume 1.

6. Chen, Y.; Zhang, M. MOOC student dropout: Pattern and prevention. In Proceedings of the ACM Turing 50th Celebration
Conference, Shanghai, China, 12 May 2017. [CrossRef]

7. Becker, B.A.; Quille, K. 50 Years of CS1 at SIGCSE. In Proceedings of the SIGCSE '19: The 50th ACM Technical Symposium on
Computer Science Education, Minneapolis, MN, USA, 27 February–2 March 2019.

8. Luxton-Reilly, A.; Becker, B.A.; Ott, L.; Simon; Giannakos, M.; Paterson, J.; Albluwi, I.; Kumar, A.N.; Scott, M.J.; Sheard, J.;
et al. A review of introductory programming research 2003–2017. In Proceedings of the Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, Larnaca, Cyprus, 1–3 July 2018.

9. Briggs, T.; Girard, C.D. Tools and Techniques for Test-Driven Learning in CS1. J. Comput. Sci. Coll. 2007, 22, 37–43.
10. Edwards, S.H. Using software testing to move students from trial-and-error to reflection-in-action. In Proceedings of the

Proceedings of the SIGCSE Technical Symposium on Computer Science Education, Norfolk, VA, USA, 3–7 March 2004.
11. Miller, L.D.; Soh, L.K.; Chiriacescu, V.; Ingraham, E.; Shell, D.F.; Hazley, M.P. Integrating computational and creative thinking

to improve learning and performance in CS1. In Proceedings of the SIGCSE 2014—Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, Atlanta, GA, USA, 5–8 March 2014.

12. Chen, T.Y.; Lewandowski, G.; McCartney, R.; Sanders, K.; Simon, B. Commonsense computing: Using student sorting abilities to
improve instruction. In Proceedings of the SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science Education,
Covington, KY, USA, 7–11 March 2007.

13. Gonzalez, G. Constructivism in an introduction to programming course. J. Comput. Sci. Coll. 2004, 19, 299–305.
14. Bennedsen, J.; Caspersen, M.E. Revealing the programming process. ACM SIGCSE Bull. 2005, 37. [CrossRef]
15. Murphy, L.; Wolff, D. Creating video podcasts for CS1: Lessons learned. J. Comput. Sci. Coll. 2009, 25, 152–158.
16. Medeiros, R.P.; Ramalho, G.L.; Falcao, T.P. A Systematic Literature Review on Teaching and Learning Introductory Programming

in Higher Education. IEEE Trans. Educ. 2019, 62. [CrossRef]
17. Skalka, J.; Drlík, M. Educational Model for Improving Programming Skills Based on Conceptual Microlearning Framework BT. In

The Challenges of the Digital Transformation in Education; Auer, M.E., Tsiatsos, T., Eds.; Springer International Publishing: Cham,
Switzerland, 2020; pp. 923–934. [CrossRef]

18. Anindyaputri, N.A.; Yuana, R.A.; Hatta, P. Enhancing Students’ Ability in Learning Process of Programming Language using
Adaptive Learning Systems: A Literature Review. Open Eng. 2020, 10. [CrossRef]

19. Kordaki, M. A drawing and multi-representational computer environment for beginners’ learning of programming using C:
Design and pilot formative evaluation. Comput. Educ. 2010, 54. [CrossRef]

20. Lee, D.M.C.; Rodrigo, M.M.T.; Baker, R.S.J.D.; Sugay, J.O.; Coronel, A. Exploring the relationship between novice programmer
confusion and achievement. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerlad, 2011; Volume 6974 LNCS.

21. Krusche, S.; Seitz, A. ArTEMiS—An automatic assessment management system for interactive learning. In Proceedings of
the SIGCSE 2018—Proceedings of the 49th ACM Technical Symposium on Computer Science Education, Baltimore, MD, USA,
21–24 February 2018; pp. 284–289. [CrossRef]

22. Fuller, U.; Johnson, C.G.; Ahoniemi, T.; Cukierman, D.; Hernán-Losada, I.; Jackova, J.; Lahtinen, E.; Lewis, T.L.; Thompson, D.M.;
Riedesel, C.; et al. Developing a computer science-specific learning taxonomy. ACM SIGCSE Bull. 2007, 39. [CrossRef]

23. Malik, S.I.; Coldwell-Neilson, J. A model for teaching an introductory programming course using ADRI. Educ. Inf. Technol. 2017,
22. [CrossRef]

24. Ali, A. A Conceptual Model for Learning to Program in Introductory Programming Courses. Issues Inf. Sci. Inf. Technol. 2009,
6. [CrossRef]

25. Skalka, J.; Drlík, M. Conceptual Framework of Microlearning-Based Training Mobile Application for Improving Programming Skills;
Springer: Cham, Switzerland, 2018; Volume 725, ISBN 9783319751740.

26. Alshaye, I.; Tasir, Z.; Jumaat, N.F. The Conceptual Framework of Online Problem-Based Learning Towards Problem-Solving
Ability and Programming Skills. In Proceedings of the 2019 IEEE Conference on e-Learning, e-Management and e-Services, IC3e
2019, Penang, Malaysia, 19–21 November 2019.

27. Krpan, D.; Mladenović, S.; Zaharija, G. The framework for project based learning of object-oriented programming. Int. J.
Eng. Educ. 2019, 35, 1366–1377.

http://doi.org/10.3390/app10134566
http://doi.org/10.1145/3063955.3063959
http://doi.org/10.1145/1047124.1047413
http://doi.org/10.1109/TE.2018.2864133
http://doi.org/10.1007/978-3-030-11932-4_85
http://doi.org/10.1515/eng-2020-0092
http://doi.org/10.1016/j.compedu.2009.07.012
http://doi.org/10.1145/3159450.3159602
http://doi.org/10.1145/1345375.1345438
http://doi.org/10.1007/s10639-016-9474-0
http://doi.org/10.28945/1078

Sustainability 2021, 13, 3293 29 of 30

28. Khaleel, F.L.; Ashaari, N.S.; Wook, T.S.M.T.; Ismail, A. Methodology for developing gamification-based learning programming
language framework. In Proceedings of the 2017 6th International Conference on Electrical Engineering and Informatics:
Sustainable Society Through Digital Innovation, ICEEI 2017, Langkawi, Malaysia, 25–27 November 2017; Volume 2017.

29. Da Silva, S.J.R.; Rigo, S.J.; Diehl, P. Tri-lua: Using gamification as support learning programming language. In Proceedings of the
European Conference on Games-based Learning, Paisley, UK, 6–7 October 2016.

30. Labaj, M.; Šimko, M.; Tvarožek, J.; Bieliková, M. Integrated environment for learning programming. In Proceedings of the Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2014; Volume 8719 LNCS.

31. Ciancarini, P.; Missiroli, M.; Russo, D. Cooperative Thinking: Analysing a new framework for software engineering education.
J. Syst. Softw. 2019, 157. [CrossRef]

32. López-Fernández, D.; Alarcón, P.P.; Tovar, E. Motivation in engineering education a framework supported by evaluation
instruments and enhancement resources. In Proceedings of the IEEE Global Engineering Education Conference, EDUCON,
Tallinn, Estonia, 18–20 March 2015; Volume 2015.

33. Sweller, J. Cognitive Load During Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12. [CrossRef]
34. Skalka, J.; Drlik, M. Priscilla—Proposal of System Architecture for Programming Learning and Teaching Environment. In

Proceedings of the 2018 IEEE 12th International Conference on Application of Information and Communication Technologies
(AICT), Almaty, Kazakhstan, 17–19 October 2018. [CrossRef]

35. Žufic, J.; Jurcan, B. Micro Learning and EduPsy LMS. In Proceedings of the Central European Conference on Information and
Intelligent Systems, Varazdin, Croatia, 23–25 September 2015; Volume 2015, pp. 115–120.

36. Jomah, O.; Masoud, A.K.; Kishore, X.P.; Aurelia, S. Micro Learning: A Modernised Education System. Brain. Broad Res. Artif.
Intell. Neurosci. 2016, 7, 103–110.

37. Grevtseva, Y.; Willems, J.; Adachi, C. Social media as a tool for microlearning in the context of higher education. In Proceedings
of the 4th European Conference on Social Media, ECSM 2017, Vilnius, Lithuania, 3–4 July 2017.

38. Polasek, R.; Javorcik, T. Results of pilot study into the application of microlearning in teaching the subject computer architecture
and operating system basics. In Proceedings of the 2019 International Symposium on Educational Technology, ISET 2019, Hradec
Králové, Czech Republic, 2–4 July 2019.

39. Lim, C.; Ryu, J.; Martindale, T.; Kim, N.; Park, S. Learning, Design, and Technology in South Korea: A Report on the AECT-
Korean Society for Educational Technology (KSET) Panel Discussion. TechTrends 2019, 63. [CrossRef]

40. Jones, N.D.; Gomard, C.K.; Sestoft, P. Partial Evaluation and Automatic Program Generation; Prentice-Hall, Inc.: Upper Saddle River,
NJ, USA, 1999; ISBN 0130202495.

41. Selby, R.W.; Porter, A.A. Learning from Examples: Generation and Evaluation of Decision Trees for Software Resource Analysis.
IEEE Trans. Softw. Eng. 1988, 14. [CrossRef]

42. Daly, C. Roboprof and an introductory computer programming course. ACM SIGCSE Bull. 1999, 31, 155–158. [CrossRef]
43. Zheng, J.; Williams, L.; Nagappan, N.; Snipes, W.; Hudepohl, J.P.; Vouk, M.A. On the value of static analysis for fault detection in

software. IEEE Trans. Softw. Eng. 2006, 32. [CrossRef]
44. Rodríguez-del-Pino, J.C.; Rubio-Royo, E.; Hernández-Figueroa, Z. A Virtual Programming Lab for Moodle with automatic

assessment and anti-plagiarism features. In Proceedings of the Conference on e-Learning, e-Business, Entreprise Information
Systems e-Government, Las Vegas, NV, USA, 16–19 July 2012.

45. Fernández Alemán, J.L. Automated assessment in a programming tools course. IEEE Trans. Educ. 2011, 54. [CrossRef]
46. Wilcox, C. The role of automation in undergraduate computer science education. In Proceedings of the SIGCSE 2015—Proceedings

of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO, USA, 4–7 March 2015.
47. Skalka, J.; Drlik, M.; Obonya, J. Automated Assessment in Learning and Teaching Programming Languages using Virtual

Learning Environment. In Proceedings of the IEEE Global Engineering Education Conference (EDUCON2019), Dubai, United
Arab Emirates, 8–11 April 2019. [CrossRef]

48. Jenkins, T. On the Difficulty of Learning to Program. In Proceedings of the 3rd Annual Conference of the LTSN Centre for
Information and Computer Sciences, Loughborough, UK, 23–29 August 2002; Volume 4, No. 2002. pp. 53–58.

49. Gomes, A.J.; Santos, Á.N.; Mendes, A.J. A study on students’ behaviours and attitudes towards learning to program. In
Proceedings of the Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, Haifa, Israel,
3–5 July 2012.

50. Gaudencio, M.; Dantas, A.; Guerrero, D.D.S. Can computers compare student code solutions as well as teachers? In Proceedings
of the SIGCSE 2014—Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta, GA, USA,
5–8 March 2014.

51. Barra, E.; López-Pernas, S.; Alonso, A.; Sánchez-Rada, J.F.; Gordillo, A.; Quemada, J. Automated Assessment in Programming
Courses: A Case Study during the COVID-19 Era. Sustainability 2020, 12, 7451. [CrossRef]

52. Gordillo, A. Effect of an instructor-centered tool for automatic assessment of programming assignments on students’ perceptions
and performance. Sustainability 2019, 11, 5568. [CrossRef]

53. Tovar, E.; Soto, Ó. Are new coming computer engineering students well prepared to begin future studies programs based on
competences in the european higher education area? In Proceedings of the Frontiers in Education Conference, FIE, San Antonio,
TX, USA, 18–21 October 2009.

http://doi.org/10.1016/j.jss.2019.110401
http://doi.org/10.1207/s15516709cog1202_4
http://doi.org/10.1109/ICAICT.2018.8746921
http://doi.org/10.1007/s11528-019-00418-x
http://doi.org/10.1109/32.9061
http://doi.org/10.1145/384267.305904
http://doi.org/10.1109/TSE.2006.38
http://doi.org/10.1109/TE.2010.2098442
http://doi.org/10.1109/EDUCON.2019.8725127
http://doi.org/10.3390/su12187451
http://doi.org/10.3390/su11205568

Sustainability 2021, 13, 3293 30 of 30

54. Bekki, J.M.; Dalrymple, O.; Butler, C.S. A mastery-based learning approach for undergraduate engineering programs. In
Proceedings of the Frontiers in Education Conference, FIE, Seattle, WA, USA, 3–6 October 2012.

55. Bloom, B.S. Taxonomy of Educational Objectives Book 1: Cognitive Domain; Addison Wesley Publishing Company: Boston, MA, USA,
1984; ISBN 0582280109.

56. Anderson, L.W.; Krathwohl, D.R.; Bloom, B.S. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives; Longman: Harlow, UK, 2001.

57. Kafai, Y.B. Constructionism in Practice: Designing, Thinking, and Learning in A Digital World; Routledge: Abingdon-on-Thames,
UK, 2012.

58. Palloff, R.M.; Pratt, K. Collaborating Online: Learning Together in Community; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 32.
59. Wenger, E. Communities of practice and social learning systems: The career of a concept. In Social Learning Systems and

Communities of Practice; Springer: London, UK, 2010.
60. Hunicke, R.; Leblanc, M.; Zubek, R. MDA: A formal approach to game design and game research. In Proceedings of the AAAI

Workshop—Technical Report, San Jose, CA, USA, 25–29 July 2004; Volume WS-04-04.
61. Chou, Y.-K. Actionable Gamification: Beyond Points, Badges, and Leaderboards; Octalysis Media: Fremont, CA, USA, 2016.
62. Wise, A.F.; Vytasek, J.; Hausknecht, S.; Zhao, Y. Developing learning analytics design knowledge in the “middle space”: The

student tuning model and align design framework for learning analytics use. Online Learn. J. 2016, 20. [CrossRef]
63. Skalka, J.; Benko, L.; Boryczka, M.; Landa, J.; Rodríguez-del-Pino, J.C. Java Fundamental; FITPED: Nitra, Slovakia, 2020. [CrossRef]
64. Pieterse, V. Automated Assessment of Programming Assignments. In Proceedings of the 3rd Computer Science Education

Research Conference on Computer Science Education Research, Heerlen, The Netherlands, April 2013; pp. 45–56.
65. Papadakis, S.; Kalogiannakis, M.; Orfanakis, V.; Zaranis, N. The appropriateness of scratch and app inventor as educational

environments for teaching introductory programming in primary and secondary education. Int. J. Web-Based Learn. Teach. Technol.
2017, 12, 58–77. [CrossRef]

66. Papadakis, S.; Kalogiannakis, M. Using gamification for supporting an introductory programming course. The case of classcraft
in a secondary education classroom. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering; Springer: Cham, Switerland, 2018; Volume 229.

http://doi.org/10.24059/olj.v20i2.783
http://doi.org/10.17846/2020-java1
http://doi.org/10.4018/IJWLTT.2017100106

	Introduction
	Related Work
	Frameworks and Models
	The Ideas behind the Framework
	Microlearning
	Automated Assessment

	Materials and Methods
	The Framework Definition
	Additional Features of Framework
	Moodle Implementation
	The Educational Content
	Definition of Hypotheses
	Characteristics of the Respondents

	Results
	H1—Improvement of Students’ Results in the Introductory Programming Course
	Pre-Test
	Post-Test

	H2—Improvement of Students’ Results in the Advanced Programming Course
	Pre-Test
	Post-Test

	Dependencies Inspection

	Discussion
	Conclusions
	References

