The 400 m hurdles race is a rhythmic sprinting event. Speed and speed ndurance are basic requirements, but the ability to express these in a rhythmic pattern is more important. Then, race distribution and rhythmic structure are for a successful in this event (1). There have been numerous studies of the 400 m hurdles over the last few years. However, the 400 m hurdles race is an athletic discipline rarely ubjected to official individual biomechanical study at World Championships or Olympic Games (2,3,4).

Related to the stride patterns or rhythmic structures, uniformity is non-existen and most patterns are individual (one-person). Most of the athletes do not repeat stride patterns from one round to the next. And no finalist repeated the number of strides between hurdles throughout the 3 races. This may be due to the use of different strategies according to the necessities of each race, or because the stride pattern is not yet assumed

75 \% fathetes execute at least one change of stride pattern during the race. As usual in men races of 400 m hurdles, the first change is mostly carried out at the $7^{\text {th }}$ hurdle. Alt hough among the finalist, the first change is preferably delayed to the last two hurdles or n change take place

Although it is preferable to lead with the left leg at hurdles on a curve (hurdles 1, 2, 6, 7 and), only 3 athletes from the final attack those 5 five hurdles with their left leg, and 2 attack all with their right. In the total sample, 64.28% attack hurdles on a curve with their left leg.

22 different rhythmic structures have been found in heats, 13 in the semi-finals (including 5 new ones) and 6 in the final (including 1 new one). None of the finalists repeats rhythmic tructure in the disputed races. Moreover, the athletes who ran the fewest steps in the total race achieved better results (Rxy .577, p<.001).

Related to the distribution of the effort, the best athletes are the ones with the lowest speed losses after the fifth hurdle, have the smallest time differenc between fastest and slowest interval, and less time wasted before the change and the final time has been found in the total of the sample, being the highest in the fift Hic rhythmic unit, between hurdles 5 and 6 (Rxy 823,p<.001).

BIOMECHANICAL ANALYSIS OF THE MEN'S 400 M HURDLES AT THE IAAF WORLD ATHLETICS CHAMPIONSHIPS DOHA 2019: RHYTHMIC STRUCTURE AND EFFORT DISTRIBUTION.
 MATEOS, C. ${ }^{5}$, BALADA, A. ${ }^{1}$, PLANAS, A. ${ }^{6}$
INEFC Barcelona, Universitat de Barcelona. 2. Universitat de Vic-UCC. 3. Universidad de Sevilla 4. INEF, Universidad Politécnica de Madrid. 5. Universidad de Las Palmas de Gran Canaria. 6. INEFC Lleida, Universitat de Lleida.
METHODS

Figure 1: Lootion of the 3 cameras in the stadium stands. All of them took the ret from the first throrle, the kepat all particicipants in the traming throughout he race

\qquad

0

The rhythmic structure and effort distribution of the nine men's 400 m hurdles races of the IAAF World Athletics Championships Doha 2019 have been analysed: 5 heats (37 athletes), 3 semi-finals (24 athletes) and 1 final (8 athletes). Thus, 69 individual performances have been analysed. 87 variables of each athlete by race were analysed, 19 qualitative and 68 quantitative (including spatial, temporal and spatio-temporal parameers), related to the rhythmic structure and effort distribution. All races were recorded by 3 cameras (2 Casio Ex-F1 and 1 Sony A9) placed in different positions of the stand of he Khalifa Stadium, permanently recording all the participants in each race and also ecording the output trigger signal. The images were analysed using Kinovea (v.0.8.15) software

Table 1: Rhythmic structures found in heats, semi-finials and inna and number of aftheees who carried them out

Rhythmic structure	Heats	Semi-finals	Final	Total
13 to 8th, 15 to 10th	1	1		2
13 to 6 th, 14 to 9 th, 15 to 10th	1			1
15 to 9th, 16 to 10th	1			1
13 to 8th, 14 to 10th	2		2	4
15 to 10th	2	1		3
13 to 7 th, 14 to 10th	2	4		6
13 to 7th, 14 to 9th, 15 to 10th	1		2	3
13 to 3th, 12 to 5th, 13 to 9th, 14 to 10th	1			1
13 to 6 th, 14 to 8 th, 15 to 10th	4	4		8
13 to 5th, 14 to 7th, 15 to 10th	4	2	1	7
14 to 6 th, 15 to 10th	2	1		3
15 to 2th, 14 to 6th, 15 to 10th	1			1
15 to 7th, 16 to 9 th, 17 to 10th	1			1
13 to 9th, 14 to 10th	1		1	2
13 to 5th, 14 to 10th	3			3
13 to 8th, 15 to 9th, 14 to 10th	1			1
14 to 9 th, 15 to 10th	1			1
13 to 6th, 14 to 10th	3	5		8
14 to 7th, 15 to 10th	2	1		3
13 to 5th, 14 to 8th, 15 to 10th	1			1
14 to 3 th, 13 to 4th, 14 to 6 th, 15 to 10th	1			1
14 to 2th, 15 to 3th, 14 to 5th, 15 to 10th	1			1
13 to 3th, 12 to 5th, 13 to 8th, 14 to 10th		1		1
14 to 3th, 13 to 4th, 14 to 8th, 15 to 10th		1		1
13 to 10th		1	1	2
15 to 8th, 16 to 10th		1		1
13 to 5th, 14 to 9 th, 16 to 10th		1		1
13 to 9th, 15 to 10th			1	1

UVIC
UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

CONCLUSION

A correct distribution of effort and a more stable rhythmic structure are determining factors oobtain the best results in the men's 400 m hurdles event.

Numerous and clearly differentiated stride patterns appear in this World Championship. Uniformity is non-existent and more rhythmic structures are individual (one-person)

REFERENCES

1) Schiffer, J. (2012) The 400m Hurdles, New Studies in Athletics, 1-2 (9-24)
2) Lopez, JL. et al. (2012) Analysis of the Choice of the Predominant Lead Leg in the 400 m Hurdles at the $13^{\text {th }}$ World Athletics Championships Daegu 2011. Apunts. Educación Física y Deportes, 110, 4 (70-77)
3) Guex, K. (2012) Kinematic Analysis of the Women's 400 m Hurdles, New Studies in Ath letics, 1-2 (41-51)
4) Behm, J.J. (2007) 400 haies: 1900-2006. Histoire de quatrache (44-47)
