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Abstract: The on-board processing of remotely sensed hyperspectral images is gaining momentum
for applications that demand a quick response as an alternative to conventional approaches where the
acquired images are off-line processed once they have been transmitted to the ground segment.
However, the adoption of this on-board processing strategy brings further challenges for the
remote-sensing research community due to the high data rate of the new-generation hyperspectral
sensors and the limited amount of available on-board computational resources. This situation
becomes even more stringent when different time-sensitive applications coexist, since different tasks
must be sequentially processed onto the same computing device. In this work, we have dealt with
this issue through the definition of a set of core operations that extracts spectral features useful
for many hyperspectral analysis techniques, such as unmixing, compression and target/anomaly
detection. Accordingly, it permits the concurrent execution of such techniques reusing operations
and thereby requiring much less computational resources than if they were separately executed.
In particular, in this manuscript we have verified the goodness of our proposal for the concurrent
execution of both the lossy compression and anomaly detection processes in hyperspectral images.
To evaluate the performance, several images taken by an unmanned aerial vehicle have been used.
The obtained results clearly support the benefits of our proposal not only in terms of accuracy but
also in terms of computational burden, achieving a reduction of roughly 50% fewer operations to be
executed. Future research lines are focused on extending this methodology to other fields such as
target detection, classification and dimensionality reduction.

Keywords: hyperspectral imaging; lossy compression; anomaly detection; hardware-friendly;
advanced processing algorithms; concurrent computing; push-broom scanners; line-by-line processing;
orthogonal projections; real-time applications

1. Introduction

In recent decades, hyperspectral imagery has experienced a growing popularity, becoming
one of the most powerful tools for the Earth observation. In fact, hyperspectral technology
has been already used in multiple remote-sensing applications, such as precision agriculture,
geoscience, environmental monitoring, urban surveillance and homeland security, among others [1–6],
although the continuous evolution of this technology is opening up new ground in potential areas from
commercial and industrial applications to biomedicine [7,8]. This rising popularity is rooted in the
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great wealth of spectral information that hyperspectral images (HSIs) collect along the electromagnetic
spectrum. This permits having a characteristic spectral signature for each image pixel that allows the
identification and detection of specific materials and objects in the scene, as well as the estimation of
physical parameters of many complex surfaces.

However, hyperspectral image processing poses several challenges due mainly to the high
volume of data that must be managed, which typically comprises several Gigabytes per flight [9].
The problem is further complicated by the incorporation of the latest-generation sensors that can
produce continual or nearly continual streams of higher-dimensional data [10]. In this context,
on-Earth processing has been the mainstream solution for remote-sensing applications that use
hyperspectral images. Traditionally, images taken by Earth observation (EO) platforms aboard
satellites or manned/unmanned aerial vehicles are downloaded to the ground segment where
they are off-line processed on supercomputing systems typically based on Graphics Processing
Units (GPUs), Central Processing Units (CPUs), heterogeneous CPU/GPU architectures, or even
Field-Programmable Gate Array (FPGAs) [11]. This has been done in this way in order to reduce
the computational burden of processes that are executed on-board due to the limitations in the
available on-board computational resources as well as the restrictions in power budget and storage
space [12,13]. In the space domain, FPGAs have consolidated as the standard choice for on-board
remote-sensing processing due to their smaller size, weight and power consumption, as well as for
the existence of radiation-hardened and radiation-tolerant FPGAs [14]. However, these devices are
more expensive, physically larger and are often technology generations behind in both performance
and functionality than their commercial counterparts [14,15]. Regarding GPUs, they have evolved into
a highly parallel, multithreaded, many-core processors with tremendous computational speed and
very high memory bandwidth [16]. However, they exhibit very high power dissipation figures and are
not radiance-tolerant, which has prevented their full incorporation to spaceborne Earth observation
missions [16]. Fortunately, the emergence of computing boards that embed low energy consumption
GPUs has made more attractive their use, especially in on-board applications carried out by unmanned
aerial vehicles (UAVs) [9,17,18]. Nevertheless, these low-power GPUs (LPGPUs) are not as high
performing as the same generation desktop GPUs [19,20].

Unfortunately, the data transmission from the remote-sensing platforms to the Earth surface
introduces important delays related to the communication of a large amount of data between the
source and the final target, producing a bottleneck that can seriously reduce the effectiveness of
real-time applications or applications that demand prompt replies [21,22]. Consequently, real-time
on-board processing has become a very interesting topic within the remote-sensing field to provide a
solution to this type of applications [14,15,22,23]. In the space domain, this is due to the fact that both
the acquisition rates of the next-generation hyperspectral sensors and the computational capabilities
of the latest-generation space-grade hardware devices are growing [24]. Additionally, the trend for
CubeSats is to use common System on Chip (SoC) devices with commercial FPGAs due to their superior
performance in terms of power, speed and resources compared to radiation-hardened FPGAs [15,25].
On the contrary, the transmission bandwidth of the data link has been kept relatively stable [26,27].
Accordingly, for being able to transfer to the Earth surface all the acquired data, it is necessary to achieve
much higher compression ratios, moving from lossless to lossy hyperspectral compression [28–30].
The alternative is to analyze on-board the hyperspectral data in order to transmit just the obtained
results or discard the information that is not of interest for the targeted applications, which reduces
the total amount of data to be sent to the Earth surface as well as the required compression ratios.
Regarding manned/unmanned aerial vehicles, the interest of on-board carrying out the hyperspectral
data analysis is more related to the necessity of obtaining real-time results as well as reducing the
storage requirements [9,31].

Nevertheless, in order to carry out this second alternative and execute on-board the hyperspectral
data processing, it is still necessary to fulfill many requirements imposed by the available aboard
hardware devices and to have in consideration that the computational resources are limited.
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Regrettably, the algorithms traditionally proposed for hyperspectral analysis have been addressed
as independent entities, using those mathematical methods that better maximize the results for each
particular case. In addition, these approaches normally give rise to complex algorithms with many data
dependencies. This is because the algorithm development phase is usually detached from the hardware
implementation stage, resulting in very inefficient hardware implementations. All of this makes the
on-board execution of multiple processes for analyzing the acquired hyperspectral data not fully
viable, especially under real-time constraints [6,14]. Additionally, in view of the computationally
intensive nature of state-of-the-art hyperspectral imaging algorithms, new hardware-friendly
solutions are required enabling real-time execution based on an appropriate trade-off among design
requirements [14].

Considering all these facts, in this manuscript we have dealt with the issue around the
on-board execution of multiple hyperspectral analysis techniques onto the same hardware device and
concurrently, understanding it as simultaneously. On this basis, a new algorithmic solution is proposed
in this work, based on a set of common core operations that allows the concurrent execution of multiple
hyperspectral analysis processes at a reasonable computational burden. As many other state-of-the-art
approaches for analyzing hyperspectral images [32–38], the proposed set of core operations is based
on orthogonal projection techniques. Concretely, the proposed method uses a modified version of the
Gram–Schmidt orthogonalization process [39,40] that allows extraction of useful information for many
different hyperspectral imaging applications while at the same time, ensuring a low computational
complexity and a high level of parallelism. The advantages of this set of core operations have
already been tested using different algorithms specifically developed for unmixing applications [40],
hyperspectral lossy compression [41] and anomaly detection [42,43]. Additionally, some of these
algorithms have been successfully implemented into parallel computing devices, such as LPGPUs
mounted on a UAV [20] and next-generation space-grade FPGAs [44], achieving real-time performance
in both cases.

Concretely, in this work the proposed set of core operations has been optimized in such a way
that it can be executed just once and reuse the obtained results for carrying out multiple hyperspectral
analysis in a concurrent manner, thus reducing the overall computational cost and the required
hardware resources. In particular, we have focused on the lossy compression of HSIs and the detection
of anomalous pixels to demonstrate the goodness of the proposed methodology. The reasons why
we have dealt with the compression issue have been clearly analyzed in above lines. In relation
with anomaly detection, we have decided to focus on applications in which a prompt response is
mandatory [45,46], such as the one introduced in [47] within the European H2020 project ENABLE-S3
(European Initiative to Enable Validation for Highly Automated Safe and Secure Systems). The goal
of this work was the automated driving of a harvester for wildlife friendly agro-operation. To do
this, a push-broom hyperspectral camera mounted on a UAV inspects the terrain to find big obstacles
(animals or rocks) to prevent fatal accidents due to agricultural mowing operations. In this scenario,
anomaly detection can be used to find these obstacles. Due to inherent nature of this application,
the on-board processing of the captured images is mandatory, leaving no room for the off-line
processing of them. Nevertheless, we would like to mention that this methodology could be potentially
extended to include other processes without a relevant increment of the required computational
resources and without affecting the quality of the obtained results.

The rest of this paper is organized as follows. Section 2 deepens in the proposed set of core
operations and provides a detailed description of the proposed methodology for the concurrent
execution of lossy compression for HSIs and anomaly detection. Section 3 describes the hyperspectral
data sets, the performance assessment metrics used to evaluate the accuracy of the results provided by
the proposed solution and also shows the obtained experimental results. In Section 4, we discuss the
strengths and limitations of our method as well as its potential to be extended to other remote-sensing
applications. Finally, Section 5 collects the drawn conclusions.
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2. Materials and Methods

2.1. Proposed Set of Core Operations

Hyperspectral imaging gathers spectral information of hundreds of continuous and narrow
wavelengths along the electromagnetic spectrum. Therefore, any single pixel within an HSI is
associated with a full continuous spectrum in a given range, commonly called spectral signature of
the pixel. HSIs are spectrally and spatially smooth which means that nearby spectra and wavelengths
are highly correlated [16]. For this reason, pixels within an HSI can be grouped according to their
spectral similarities and represented as a combination of relatively few spectral signatures that are
representative of each cluster. As a consequence, features of HSIs normally reside in a subspace that
normally has a much smaller dimension than the original number of spectral bands.

On this basis, the extraction of the most representative pixels of materials present in a scene
permits performing dimensionality reduction and thus, to compress the HSIs as analyzed in [41] for
the lossy compression of HSIs. Considering that a HSI is composed of pe pixels with nb spectral bands,
if these pe pixels are projected onto a subset of the p most different pixels within the scene, the original
pe pixels can be represented as a linear combination of their projections onto those p pixels. Therefore,
the original hyperspectral cube can be represented on a new subspace of dimension p, being p << nb,
and hence, to be compressed. The number of p selected pixels directly determines the compression
ratio achieved in the compression process.

In addition, this methodology eases to perform other hyperspectral imaging analysis techniques,
such as unmixing, target detection and anomaly detection. In the linear mixing model, the spectrum
of a mixed pixel is a linear combination of the endmember spectra weighted by the fractional area
coverage by each endmember in a pixel, commonly named abundance. In this case, endmembers can
be seen as the p most different pixels in an image while abundances can be derived from the projection
of each image pixel onto each endmember [40]. In the particular case of anomaly detection, this set of
p vectors can be employed to estimate the subspace spanned by the background samples in which
the projection of the anomalous pixels are notoriously lower [43]. Similarly, in the field of target
detection this methodology can be used to extract the most representative pixels of the background,
also commonly referred to as undesired signatures, to be later used to annihilate from image pixels the
spectral information that does not belong to the desired target [48].

The main conclusion to be drawn from the above is that many hyperspectral imagery processing
techniques may be performed using the same mathematical methods. However, data collected by the
hyperspectral sensors are currently processed using different kinds of mathematical algorithms to
extract the information that is useful for the targeted hyperspectral imaging application. Furthermore,
the complexity of the state-of-the-art algorithms together with the amount of data to be processed
normally result in very high computational times, making the hyperspectral technology not useful for
applications under tight latency/power/memory constraints.

With this in mind, we have gone a step further in this work through the definition of a set of
common core operations that extract features from the HSIs useful for many applications. As a novelty,
it permits the concurrent execution of many different tasks at the same time with the advantage of
sharing the most computationally intensive operations. To do this, our proposal is based on orthogonal
projection techniques and, more specifically, on a modified version of the well-known Gram—Schmidt
orthogonalization method [39,40]. This modified version of the Gram—Schmidt method features low
computational complexity since non-complex matrix calculation is involved and previously computed
information is reused.

Additionally, the proposed set of core operations can be efficiently and independently applied
on blocks of image pixels without requiring any specific spatial alignment. This feature makes our
proposal a promising solution for real-time applications, especially when using hyperspectral sensors
based on push-broom/whisk-broom scanners since lines of image pixels, also named hyperspectral
frames, can be processed as soon as they are sensed. In addition, the possibility of independently
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processing blocks of pixels as soon as they are sensed avoids storing and processing large amount
of data, thereby reducing the amount of required hardware resources and also speeding up the
entire process.

In the remaining of this section, we deeply analyze the proposed set of common core operations
as well as the Gram–Schmidt method to ease the understanding of the proposed methodology.

2.1.1. General Notations

In the following, HI = {Fi, i = 1, ..., nr} is a sequence of nr hyperspectral frames or lines of pixels,
Fi, comprised by nc pixels with nb spectral bands. Pixels within HI are grouped in blocks of BS pixels,
Mk =

{
rj, j = 1, ..., BS

}
, being normally BS equal to nc, or multiple of it, and k spans from 1 to nr·nc

BS .
X =

{
xj, j = 1, ..., BS

}
is an auxiliary copy of each image block Mk. E = {en, n = 1, ..., p} saves the p

most different hyperspectral pixels extracted from each Mk block. V = {vn, n = 1, ..., p} comprises p
vectors of BS elements where each vn vector corresponds to the projection of the BS pixels within Mk
onto the corresponding n extracted pixel, en. Q = {qn, n = 1, ..., p} and U = {un, n = 1, ..., p} save p
pixels of nb bands that are orthogonal among them. Finally, P is the orthogonal projection matrix that
is a square matrix of dimension nb · nb and I is the identity matrix with the same dimensions.

2.1.2. Gram-Schmidt Method

The Gram–Schmidt method calculates the orthogonal projection of a vector ei to a set of
vectors E = [e1, e2, ..., ej], with j < i, by subtracting the portion of the vector ei contained in
the directions spanned by the vectors E = [e1, e2, ..., ej]. Consequently, the Gram–Schmidt method
allows orthogonalization of a set of independent vectors E = [e1, e2, ..., ep] and brings as a result a set
of orthogonal vectors Q = [q1, q2, ..., qp] and their normalized vectors U = [u1, u2, ..., up].

In this work, we employed a modified version of the Gram–Schmidt method where vectors up are
normalized dividing by the squared of its l2norm. This modified version of the Gram–Schmidt method
features low computational complexity since simple matrix operations are involved and, allows the
reuse of previously computed information, which is reflected in speeding up the overall process.

The pseudocode of the modified version of the Gram–Schmidt method is shown in Algorithm 1,
where “′” represents the transpose of a vector. It has to be mentioned that the transpose of a vector,
x′, followed by “.” and other vector, y, means the dot product between these two vectors. Similarly,
a vector, x′, followed by “." and a set of vectors, Y, means the dot product between x′ and each column
vector within Y. This naming has been adopted throughout the manuscript. As it can be seen, the first
orthogonal vector within Q is e1. In the second iteration, n = 2, e2 is projected on the direction spanned
by q1 = e1, giving the projection vector v1 in Line 4. Then, it is subtracted from q2 = e2 in Line 5.
As a result, q2 contains the spectral information spanned by e2 that cannot be represented by e1, i.e.,
orthogonal to e1. The process is repeated until the p vectors are orthogonal to each other.
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Algorithm 1 Modified version of the Gram–Schmidt Orthogonalization

Inputs:
E = [e1, e2, ..., ep]
Outputs:
Q = [q1, q2, ..., qp] {Orthogonalized vector}; U = [u1, u2, ..., up] {Orthonormalized vector};
Algorithm:

1: for n = 1 to p do
2: qn = en
3: for j = 1 to n− 1 do
4: vj = u′j · en;
5: qn = qn − qn · vj;
6: end for
7: un = qn/(q′n · qn);
8: end for

2.1.3. Set of Core Operations

As already mentioned, the proposed set of core operations allows performing the simultaneous
extraction of the p most representative hyperspectral pixels in a scene and identifying the amount of
the image spectral information that can be represented by them. To do this, our proposal is based on
the modified version of the Gram–Schmidt method that was further analyzed in Section 2.1.2. The first
extracted representative pixel (e1), also called characteristic pixels in the remaining of this manuscript,
is the pixel of the HSI with the highest deviation from the average pixel or centroid pixel µ̂. Afterward,
the orthogonal projection of each image pixel with respect to e1 is performed using the aforementioned
Gram–Schmidt method. At this point, image pixels just retain the information that is not contained by
e1 and thus, that is orthogonal to it. Once the first endmember has been selected, the proposed set of
core operations sequentially extracts new characteristic pixels by selecting the pixels with the largest
orthogonal projections to the pixels already extracted. With it, we achieve to select the most different
pixels in each iteration, understanding as it, those pixels that cannot be well represented by previously
selected pixels.

The proposed set of core operations is uncovered in Algorithm 2 for an image block, Mk.
Operations from 4 to 14 are repeated p times to extract the p most different pixels. First of all,
the hyperspectral image block, Mk, is centered in Line 2, obtaining matrix C by subtracting the centroid
or average pixel, µ̂, to all pixels within Mk. An auxiliary copy of C is stored in matrix X. Secondly,
the pixels are sequentially extracted from lines 4 to 13. In this process, the dot product of each frame
pixel within X with itself is first calculated from lines 5 to 7. In the remainder of this document, it
is referred as brightness of a pixel. The extracted pixels en are selected as those pixels from Mk that
correspond to the highest brightness in matrix X, as shown in line 9. Then, the orthogonal projection
vectors qn and un are accordingly obtained as shown in lines 10 and 11, respectively. After that,
the information that can be spanned by the defined qn and un orthogonal vectors is stored in the
projected image vector vn and subtracted to X in lines 12 and 13. As it can be seen, Lines 2 and 7 of
Algorithm 1 corresponds to Lines 10 and 11 of Algorithm 2, respectively. Similarly, operations shown
in Lines 4 and 5 of Algorithm 1 corresponds to Lines 12 and 13 of Algorithm 2.
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Algorithm 2 Set of core operations

Inputs:
Mk = [r1, r2, ..., rBS]
Outputs:
µ̂ {Average Pixel}; E = [e1, e2, ..., ep] {Characteristic pixels}; Q = [q1, q2, ..., qp] {Orthogonalized

vectors}; U = [u1, u2, ..., up] {Orthonormalized vectors}; V = [v1, v2, ..., vp] {Projection vectors}
Algorithm:

1: Centroid or average pixel: µ̂;
2: Centralization: C = Mk − µ̂;
3: Auxiliary Copy: X = C;
4: for n = 1 to p do
5: for j = 1 to BS do
6: Brightness Calculation: bj = x′j · xj;
7: end for
8: Maximum Brightness: jmax = argmax(bj);
9: Extracted pixels: en = rjmax ;

10: qn = xjmax ;
11: un = qn/bjmax ;
12: Projection vector: vn = u′n · X;
13: Information Subtraction: X = X− qn · vn;
14: end for

2.1.4. Discussion about the Proposed Set of Core Operations

From analysis made in the previous Section 2.1.3, it can be concluded that a HSI can be represented
as a function of some image pixels, E, and their corresponding projection vectors V. For this reason,
if a HSI is compound of pe pixels, being pe = nr · nc, and nb spectral bands, it can be now represented
by p · (nb + pe) elements, being p <<< nb, and then, getting the original image compressed. As it can
be seen, the compression ratio directly depends on the number of selected pixels, p. Therefore, if less
p vectors are extracted, more compression is obtained but on the contrary, more information is lost
during the compression-decompression process. It is because image X defined in Algorithm 2 retains
the spectral information of the image that is not contained in the already extracted characteristic pixels.
Therefore, smaller the number of extracted pixels, bigger the information that cannot be represented
by them. For this reason, the proposed set of core operations acts as an spectral transform where image
pixels are projected onto a new subspace spanned by the p selected pixels and thus, it can be used to
perform the lossy compression of HSI.

In the field of anomaly detection, the anomalous pixels are spectral signatures that significantly
differ from the background distribution and hence, cannot be well represented by it. For this reason,
the projection of the anomalous pixels is significantly higher in the orthogonal subspace to the one
spanned by the background samples. On this basis, the solution for the anomaly detection issue lies in
modeling the whole background and subtracting it from every image pixel by means of orthogonal
subspace projections. However, the mixing model, the p most characteristic pixels of a subsequent
set of hyperspectral frames, Mk, can be used to represent the background distribution. In addition,
the projection separation statistic for an image pixel rj can be calculated using the orthogonal projection
matrix, P = I−W(WTW)−1WT , where W = [wn, n = 1, ..., p] is a matrix whose columns are the p
projection basis obtained from the background samples [49]. Therefore, the proposed set of core
operations can be employed to extract the p most characteristic pixels of the background and to
estimate the orthogonal projection matrix, P.
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2.2. Proposed Methodology for Lossy Compression and Anomaly Detection

From the analysis made in Sections 2.1.3 and 2.1.4, we can conclude that a joint solution
that permits the on-board performance of both anomaly detection and lossy compression of HSIs
simultaneously and in real time is feasible. In this Section, we explain in detail how the outputs of the
proposed set of core operations can be reused to perform both processes concurrently, using much less
computational resources than if both of them were separately executed. Figure 1 shows the flow-chart
followed by our proposal to perform both the compression and the anomaly detection processes for a
particular image block, Mk.
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Figure 1. FLow-chart of the proposed algorithm stages for each image block Mk. → * means that
these variables are reused in other stages of the algorithm. If pc > pAD, then EAD is a subset of Ec

and vice-versa.

2.2.1. Set of Core Operations for Lossy Compression and Anomaly Detection

As analyzed in Section 2.1.4, the lossy compression of HSIs as well as the detection of anomalous
pixels can be addressed using the same mathematical method and, in particular, by means of the set
of core operations proposed in this work. In the field of hyperspectral lossy compression, the most
different pixels, E, and their projection vectors, V, extracted from each image block, Mk, can be used
to decorrelate the images and thereby, to compress them. In the field of anomaly detection, the most
characteristic pixels, E, within an image block, Mk, and their corresponding sets of orthogonal vectors,
Q and U, can be used to estimate the orthogonal subspace spanned by the background distribution
where anomalous pixels can be better represented. On this basis, the first step to be followed consists
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of extracting the most representative pixels within each image block, Mk, using the proposed set of
core operations. However, this number of pixels could be different for each process to be performed.

Regarding the compression process, the number of the most different pixels, E, and projection
vectors, V, extracted from each image block, Mk, directly depends on the compression ratio achieved
by our method. This number will be referred as to pc and estimated following Equation (1). In this
equation, CR represents the minimum compression ratio to be reached for the targeted application,
DR refers to the number of bits employed to represent each element of Mk and E, and Nbits determines
the number of bits used for representing the values of V. This preliminary stage where pc is computed
corresponds with the blue square named Initialization in Figure 1. Once pc is set, the core operations
defined in Section 2.1.3 and in Algorithm 2 are performed in order to extract the pc most different
pixels, E, and their corresponding projection vectors, V. They are referred to as Ec and Vc, respectively,
in the remainder of this document. These sets of vectors, jointly with the average pixel, µ, of the
image block, Mk, under analysis are the outputs needed by the subsequent algorithm stages for the
compression process, as it will be further explained in Section 2.2.2.

p ≤ DR · nb · (BS− CR)− CR
CR · (DR · nb + Nbits · BS)

(1)

Regarding the anomaly detection process, the extraction of the most characteristic pixels for
modeling the background distribution, E, must be done at first place. To do this, our proposal
independently processes the first sensed n f hyperspectral image block, Mk, under the assumption that
they are free of anomalous signatures and hence, fully representative of the background distribution,
although background samples obtained in previous flights may be also used instead of extracting them
from the first n f frames. Nevertheless, the number of extracted pixels for each image block, Mk, cannot
be enough if we use pc since it is estimated as a function of the desired compression ratio, CR. Bigger
the desired CR, fewer pixels can be transmitted and hence, worst the background is represented. In this
case, we use the remaining information that cannot be represented by the extracted en vectors, as it was
explained in Section 2.1.4, to estimate a good number of pixels representative of the background for
each image block, Mk. On this basis, if no more en pixels are selected, it means that a small part of the
spectral information is lost when the image is reconstructed using the p selected en pixels. This loss can
be measured through the maximum brightness, bjmax , of X after the last pixel is selected. The process
finishes when the loss, in percentage terms, is less than α, as it can be seen in Equation (2), where
c′jmax

· cjmax represents the dot product of the pixel rj with itself in the centralized version of the original
image, C. Accordingly, α represents the percentage of the information that will be considered to be
noise. In general, experience has shown that a stop factor, α, fixed to 1% is sufficient. As it can be seen,
the number of extracted reference vectors, p, can be different for each image block, Mk. In order to
distinguish p and E from those needed by the compression process, they are referred to as pAD and
EAD, respectively,

bjmax

c′jmax
· cjmax

· 100 < α→ Stop selecting pAD en pixels (2)

Finally, since both the compression and anomaly detection processes need to perform the set of
core operations to extract their associated vectors, it is executed just once, and its outputs are reused
by both processes. Nevertheless, the number of p iterations in Algorithm 2 are determined by the
requirements imposed by pc and pAD in such a way that if pAD < pc, then EAD is a subset of Ec.
Otherwise, Ec is a subset of EAD.

2.2.2. Subsequent Stages for Lossy Compression

After the extraction of the pc characteristic pixels, ecn , and projection vectors, vcn , using the set of
core operations, our proposal follows the same methodology as [41] to slightly increase the compression
ratio at a very low computational cost and without introducing further losses of information. To do
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this, outputs Ec, Vc and µ are independently processed in two stages, named Preprocessing and Entropy
Coding in Figure 1.

The main goal of the Preprocessing stage is to transform the aforementioned outputs to have only
positive integer elements closer to zero using the same dynamic range as the original ones. It is done
to ease the subsequent entropy coding stage that takes advantage of the redundancies within the
data to assign the shortest word length to the most common values. To perform the aforementioned
transformation, the prediction error mapper described in the Consultative Committee for Space
Data Systems (CCSDS) recommended standard for lossless multispectral and hyperspectral image
compression [50] is used. Particularly for Vc, it is also scaled to positive integer values before the error
mapping to fully exploit the available dynamic range according to the input parameter Nbits. This is
because Vc contains the projection of the image pixels, xj, into the space spanned by the different
orthogonal vectors, un, extracted in each iteration of the set of core operations. Hence, the value range
of its elements, vc, is between (−1,1]. Finally, Entropy Coding is the last stage of the compression process.
In this stage, each single output vector µ, ecn and vcn is independently coded using a Golomb–Rice
coder [51]. For more information, we encourage the reader to see [41].

2.2.3. Subsequent Stages for Anomaly Detection

As mentioned in Section 2.2.1, different EAD are extracted each time that an image block, Mk, is
processed. Additionally, if each set of pixels EADk is saved in a bigger matrix, BAD, a lot of them may
represent the same material or entity since image blocks, Mk, are independently processed.

In subspace-based anomaly detectors, anomalous pixels are better detectable in the orthogonal
subspace to the one spanned by the background distribution. For this reason, it is necessary to extract
the purest background reference vectors within BAD. For doing so, the set of core operations can
be applied once again in background, playing BAD as input matrix Mk. As outputs, we obtain the
orthogonal vectors Q and U, which are later used to compute the projection matrix, P; the average pixel
of the background distribution, µbAD, which is used to centralize the subsequent sensed image block,
Mk; and a threshold, τ = bjmax , which can be used as a benchmark to later identify anomalous pixels in
Section 2.2.3. This stage is referred as to Extraction of the Background Reference Vectors in Figure 1.

From analysis made in above lines, the background statistics are inferred from the first n f images
blocks, Mk. For this reason, the anomaly detection process itself is performed onto the following
scanned image blocks, Mk. However, the subspace that is orthogonal to the one spanned by the
background samples must be first estimated. In subspace-based anomaly detectors, the projection
separation statistic for an image pixel rj is calculated as [49]:

d = (rj − µ̂b)
T · P · (rj − µ̂b) (3)

where µ̂b is the estimation of the background sample average pixel, µbAD in this manuscript.
Computing the orthogonal subspace matrix P, defined in Section 2.1.4 as P = I−W(WTW)−1WT ,

may be a real challenge since it implies matrix inverse whose dimension directly depends on the
number of background samples pAD. On this basis, [43] proposes a hardware-friendly solution using
outputs Q and U, previously worked out. Concretely, Q is equivalent to W and U to W(WTW)−1.
Therefore, the matrix P can be calculated from P = I−QUT .

Nevertheless, d actually represents the information of an image pixel, rj, that is not contained in
the subspace spanned by the background samples, i.e., which is orthogonal to them. As a consequence,
operations involved in Equation (3) and in the computation of P can be replaced by the Gram–Schmidt
method described in Section 2.1.2, as it was further analyzed in [52]. For processing each hyperspectral
pixel, rj, using this new alternative, average pixel, µbAD, is first subtracted from rj, as shown in Line
2 of Algorithm 3. Afterwards, the information of rj that can be spanned by the background samples
is also subtracted using Q and U, as shown in Lines 3 to 6 of Algorithm 3. Finally, the amount of
information of rj that is orthogonal to the space spanned by the background samples is measured in
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line 7 as the dot product of the remainder of rj with itself. As it was concluded in [43], parameter τ is
already scaled in the orthogonal subspace spanned by P. For this reason, it can be used as a threshold
to detect the anomalous pixels. Hence, an anomalous pixel is considered to be a mild outlier whose
projection d is larger than 1.5·τ.

Algorithm 3 Alternative method to compute the orthogonal projection matrix

Inputs:
Mk = [r1, r2, ..., rBS], Q, U, µbAD, τ

Algorithm:
1: for i = 1 to BS do
2: rj = rj − µbAD
3: for k = 1 to pAD do
4: v = U

′
k · rj

5: rj = rj −Qk · v
6: end for
7: dj = r

′
j · r1

8: if di ≤ 1.5 · τ then
9: Anomalous pixel

10: end if
11: end for

Although the pAD background reference vectors were already extracted from the previous n f
image blocks, Mk, the set of core operations described in Section 2.1.3 are still being run on new received
hyperspectral frames to extract the pc most characteristic pixels, Ec, needed for the compression process.
On the basis that this Ec vectors are the most different pixels within Mk, they collect the rarest signatures
too. For this reason, if any anomalous pixel is present in Mk, it must be collected in Ec. Hence, just
these Ec vectors are projected onto the space spanned by P. In case of presence of any anomalous pixel
within Ec, the entire image block, Mk, is processed in order to also detect mixed anomalous pixels.
Otherwise, only Ec vectors are checked, thus reducing the number of operations to be performed.

2.2.4. Computational Complexity of the Proposed Methodology

In this section, the computational complexity of the proposed methodology is evaluated in terms
of the number of floating-point operations (FLOPs) involved in each stage of the algorithm. For clarity,
FLOPs are simple calculations such as addition, subtraction, multiplication, and division. On the basis
that our proposal has been specifically designed for being able to independently process blocks of
image pixels, Mk, different number of FLOPS are executed according to their index, k, as it can be
noticed from Figure 1. For this reason, algorithm stages have been redefined in this analysis according
to the range of possible values of k, i.e., k < n f , k = n f and k > n f . Consequently, Table 1 collects
the number of FLOPs required to process one image block, Mk, as a function of k. In this Table 1,
Core operations collects the number of operations involved by the proposed set of core operations
defined in Algorithm 2, Codification represents the Preprocessing and Entropy Coding stages belonging to
the compression process and Gram–Schmidt collects the number of operations described in Algorithm 3
to compute the projection separation statistic, d.
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Table 1. Number of FLOPs and computational complexity of each stage of the proposed methodology.

Stage FLOPs Complexity

k < n f Core operations pc · (6 · BS · Nb + Nb) + 2 · Nb · BS O(6 · pc · BS · Nb)

Codification 5 · pc · (Nb + BS) + 34 · pc O(5 · pc · (Nb + BS))

k = n f

Core operations (AD) pAD · (6 · pc · n f · Nb + Nb) + 2 · Nb · pc · n f O(6 · pAD · pc · n f · Nb)

Core operations pc · (6 · BS · Nb + Nb) + 2 · Nb · BS O(6 · pc · BS · Nb)

Codification 5 · pc · (Nb + BS) + 34 · pc O(5 · pc · (Nb + BS))

k > n f

Core operations pc · (6 · BS · Nb + Nb) + 2 · Nb · BS O(6 · pc · BS · Nb)

Codification 5 · pc · (Nb + BS) + 34 · pc O(5 · pc · (Nb + BS))

Gram–Schmidt 4 · pAD · pc · Nb + 3 · pc · Nb O(4 · pAD · pc · Nb))(non-anomalous)

Gram–Schmidt 4 · pAD · Nb · (pc + BS) + 3 · Nb · (pc + BS) O(4 · pAD · Nb · (pc + BS))(anomalous)

1. k < n f
In this case, the set of core operations is used to extract the pc and pAD most different pixels in
each received image block, Mk. For simplicity, we consider that pc is equal to pAD in this analysis.
In addition, the Preprocessing and Entropy Coding stages belonging to the compression process are
also executed in order to codify the outputs of the core operations before being sent.

2. k = n f
On one hand, the set of core operations and the Preprocessing and Entropy Coding stages are applied
to perform the compression of the image block at issue. On the other hand, the extraction of the
purest background reference vectors within BAD is also needed by the anomaly detection process as
explained in Section 2.2.3. Concretely, this stage is referred as to Extraction of the Background Reference
Vectors in Figure 1. For doing so, the set of core operations is used once again but in this case, BAD
plays as input matrix Mk. Whereas pc pixels were extracted from previous frames, k ≤ n f , BAD is
composed of pc · n f pixels. For this reason, BS is now replaced by pc · n f in Table 1. In addition,
the number of extracted pixels is referred as to pAD since they could be different from pc.

3. k > n f
Once the first n f hyperspectral frames were processed in order to obtain the background statistic
needed by the anomaly detection process, the set of core operations are applied in the next received
image blocks, Mk, in order to obtain the pc reference pixels needed by the compression process.
As it was explained in Section 2.2.3, these pixels are also used to detect those image blocks where
anomalous pixels are present. For doing this, the Gram–Schmidt method is used to estimate the
projection separation statistic, defined in Equation (3), for each pixel ecj . If no pixels within Ec are
anomalous, other pixels within Mk are not analyzed. Otherwise, the entire image block, Mk, is
processed to also detect mixed anomalous pixels. The number of FLOPs involved in this last step
are collected in the last two rows of Table 1. The first one collects the number of FLOPs for those
Mk free of anomalous while the second one represents the opposite case. It should be emphasized
that this last situation is very unlikely since anomalous pixels have normally a low presence.

Therefore, for an image, HI, composed of nr hyperspectral frames, Fi, with nc pixels and with a
probability x ≤ 1 of anomalous Mk, the total number of FLOPs to compute both the lossy compression
and anomaly detection processes is nr·nc

BS · (Core operations + Codification) + Core operations (AD) +
(1 − x) · ( nr·nc

BS − n f ) · Gram–Schmidt (Non-anomalous) + x · ( nr·nc
BS − n f ) · Gram–Schmidt (Anomalous).

For clarity, some numerical results are given in Section 3.3.3.



Remote Sens. 2020, 12, 1343 13 of 28

3. Results

3.1. Reference Hyperspectral Data

For evaluating the performance and effectiveness of the proposed algorithm, we need a reference
hyperspectral data set that permits evaluating both the lossy compression of HSIs and the detection
of anomalies within them. Moreover, in order to evaluate our proposal in real scenarios, we have
employed a new data set using real hyperspectral data collected by one of our unmanned aerial
platforms. In any case, we have tested the goodness of the Gram–Schmidt method using conventional
hyperspectral data sets in previous works for lossy compression and anomaly detection in [41,43],
respectively. Despite the set of core operations proposed in this work has been optimized for allowing
the concurrent execution of both processes, the obtained results are exactly the same that if both were
independently executed using the already published algorithms.

The acquisition system used for sensing the data set carries a Specim FX10 [53] push-broom
hyperspectral camera mounted on a DJI Matrice 600 drone [54]. It covers the VNIR (Visible Near
Infrared) range of the electromagnetic spectrum and collects information from 400 to 1000 nm using
224 spectral bands, with a spectral full width at half maximum (FWHM) of 5.5 nm, and 1024 spatial
pixels per hyperspectral frame or scanned cross-track line. An extensive analysis of this acquisition
system and its performance can be found in [9]. In this work, the first 20 and the last 45 spectral
bands are discarded due to the low spectral response of the hyperspectral sensor at those wavelengths,
what results in just 160 spectral bands being retained. Figure 2 graphically shows the sensor spectral
response as well as the range of spectral bands selected for the experiments.

Figure 2. Spectral response of the Specim FX10 hyperspectral camera. The range of wavelengths
collected by the data set employed in this manuscript is enclosed between dashed lines.

The data used for the experiments were collected by the aforementioned acquisition platform over
different farming areas on the island of Gran Canaria, displayed in the Google Map picture shown in
Figure 3a, during three different flight campaigns. The first one, highlighted in blue color, was carried
out over a plantation of bananas in the south-west of the island, concretely in a village called Veneguera.
The exact coordinates of the terrain are 27°52’17.4”N 15°45’44.2”W. The flight was performed at a
height of 72 m over the ground at a speed of 6 m/s with the hyperspectral camera capturing frames
at 125 frames per second (FPS), resulting in a ground sampling distance in line and across line of
approximately 5 cm. This mission consisted of 6 waypoints that provided 3 swathes. The area covered
during these swathes is highlighted in the Google Maps picture displayed in Figure 3b. Concretely,
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three portions of 825 hyperspectral frames, with their 1024 hyperspectral pixels, where cut out from
these swathes and used for the experiments. A RGB representation of these hyperspectral image
locations within the corresponding swath are displayed in Figure 4a–c, Additionally, Figure 5a–c
shows a closer view of the selected areas.

 

N 

(a)

 

N 

(b)

 

N 
(c)

 

N 

(d)

Figure 3. Google Maps pictures of the farming areas corresponding to the hyperspectral images that
are used in this work. (a) Location of the terrains on the island of Gran Canaria. (b) Area covered
during the first flight campaign over a banana plantation. (c,d) Area covered during the second and
third flight campaigns over different vineyards.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. RGB representation of the hyperspectral data acquired in each mission campaign swath that
was used in this work. Color squares highlight the regions selected for the experiments. (a) Image 1;
(b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5; (f) Image 6.
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(a) (b) (c)

(d) (e) (f)

Figure 5. RGB representation of the employed test bench. Pixels enclosed in blue circles represent
the anomalous entities to be detected. (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5;
(f) Image 6.

The second flight campaign was carried out over a vineyard area in a village called Tejeda located
in the center of the island. In particular, the exact coordinates of the scanned terrain are 27°59’35.6”N
15°36’25.6”W (highlighted in color green in Figure 3a). The flight was performed at a height of 45 m
over the ground and at a speed of 4.5 m/s with the hyperspectral camera capturing frames at 150 FPS.
This resulted in a ground sampling distance in line and across line of approximately 3 cm. This flight
mission consisted of 12 waypoints that provided 6 swathes, but just one of them was used in the
experiments carried out in this work. The ground area covered by this swath is highlighted in the
Google Map picture displayed in Figure 3b. One smaller portion of 825 hyperspectral frames with all
their 1024 hyperspectral pixels was cut out from the entire swath image for the simulations. Figure 5d
displays its RGB representation while its location within the entire frame is shown in Figure 4d.

The third flight campaign was also carried out over a vineyard area in Tejeda. The exact
coordinates of the scanned terrain, highlighted in color red in Figure 3a, are 27°59’15.2”N 15°35’51.9”W.
This terrain was scanned in a flight performed at a height of 45 m over the ground, a speed of 6 m/s
and the hyperspectral camera capturing at 200 FPS. The resulting ground sampling distance in line
and across line was approximately 3 cm. The entire flight mission consisted of 5 swathes, but just
2 of them were used for the experiments in this work. The ground area covered by these swathes
is highlighted in the Google Maps picture displayed in Figure 3d. From them, two smaller portions
of 825 hyperspectral frames with all their 1024 hyperspectral pixels were cut out for the simulations.
Figure 5e,f displays their RGB representations, while Figure 4e,f display their locations within the
entire swathes.

The raw hyperspectral data collected by our system have been calibrated using a white and
dark calibration to obtain reflectance values. Some examples of calibrated signatures corresponding
to different pixels are displayed in Figure 6. We encourage the readers to read [9] where more
details about this calibration can be found, as well as many other technical details related to the
acquisition system. Nevertheless, we have not carried out either orthorectification or georeferencing
process for the acquired data. The hyperspectral images used have been built up just by placing
the subsequent captured hyperspectral frames one next to the other [55]. This does not degrade the
quality of the experiments carried out in this work since the tested algorithms do not use any kind
of spatial information. Finally, it is worth mentioning that all RGB representations obtained from the
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hyperspectral images have been generated using the spectral bands corresponding to 450, 530 and
670 nm for the green, blue and red channels, respectively.

(a) (b)

Figure 6. Example of spectral signatures corresponding to some real pixels of the first image used in
the experiments (Figure 5a). (a) Pixel locations; (b) Pixel spectral signatures.

To evaluate the detection performance of the proposed method, the selected data set contains
some artifacts that are considered to be anomalous pixels. Their locations within the test bench have
been highlighted in Figure 5 using blue circles. These artifacts are people walking among the crop
fields represented in Figure 5a–c,e. In the case of Figure 5d, the anomalous entities are two people
standing next to the road. Finally, Figure 5f shows a person walking through the vineyards and a
concrete construction as anomalous artifacts.

3.2. Evaluation Metrics

The goodness of the proposed method has been evaluated from two different perspectives,
the quality of the compression performance and the efficiency in the detection of anomalous pixels.

Regarding the compression process, the test bench previously described has been compressed
and decompressed using different configurations of the input parameters required for the compression
process, which are BS, Nbits and CR. In order to evaluate the compression performance, the compression
ratio achieved as well as the information lost in the compression-decompression process have been
measured. The achieved compression ratio has been measured in two different ways, calculating the
ratio between the original data volume and the compressed data volume and measuring the average
number of bits per pixel per band, bpppb, used for representing the compressed image. Higher CR
and lower bpppb values indicate that a higher compression has been achieved. The information
lost in the compression-decompression process has been measured using five different quality
metrics, which are: the Signal-to-Noise Ratio (SNR) (Equation (4)), the Root Mean Squared Error (RMSE)
(Equation (5)), the Peak Signal-to-Noise Ratio (PSNR) (Equation (6)), the Maximum Absolute Difference
(MAD) (Equation (7)) and the Structural Similarity (SSIM) index (Equation (8)). It is important to
mention that although the proposed method independently compresses block of image pixels, MK,
all these metrics have been calculated using the entire compressed–decompressed images. On this
basis, np in Equations (4)–(8) represents the total number of pixels of the image under test and Ic the
compressed–decompressed image.

The MAD evaluates the amount of information lost for the worst represented value of the entire
image. Since the employed HSIs have been saved using 16 bits per pixel per band, the maximum
possible (and worst) MAD value is 65,535. The RMSE evaluates the average information lost in
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the entire image. Hence, higher RMSE values indicate higher amount of information lost in the
compression-decompression process. The SNR and PSNR metrics also evaluate the average information
lost in the entire image. However, these metrics compare the average error with the maximum possible
error and hence, higher SNR and PSNR values indicate better compression performance. The SNR and
PSNR metrics are calculated in decibels. SSIM measures distortions as a combination of three factors:
loss of correlation, luminance distortion and contrast distortion. Hence, it is defined as the product of
the powers of these three similarities, as it can be seen in Equation (8) where α, β and τ have been set
to 1. Its dynamic range is [−1,1] and value 1 indicates perfect structural similarity. Since SSIM is a
quality assessment index originally designed for two-dimensional greyscale images, we have applied
it in a band-by-band manner to evaluate the quality of the HSIs. Therefore, a mean SSIM index over
all bands has been adopted in this manuscript [56].

SNR = 10 · log10(
∑nb
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2
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Regarding the anomaly detection process, the evaluation of the proposed method in this field
is visually performed through the description of the binary maps provided by the proposed method
results, where detected anomalous pixels are segmented from the background. This is because the
test images have been sensed at high altitudes and the exact position of the anomalies in the field
was not measured. As a consequence, anomalous entities cover a very small number of image pixels.
Additionally, the pixels at the object borders are mixed with the background. For this reason, it is very
difficult to establish precise boundaries and hence, generate accurate pixel-level ground-truths.

3.3. Evaluation of the Proposed Method

This section discloses the results obtained in experiments carried out with the purpose of
evaluating the goodness of the proposed algorithm for the compression of HSIs and the detection
of anomalous pixels. To this end, data sets and quality metrics described in Sections 3.1 and 3.2,
respectively, are used.

3.3.1. Compression Performance

In this Section, different experiments have been done to evaluate the behavior of the proposed
method to compress HSIs. To this end, different configurations of the input parameters of the
compression process have been employed. Concretely, the Nbits parameter is set to 12 bits, the BS
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parameter to 1024 pixels and the CR parameter to 12, 16 and 20. According to [41], for image dynamic
ranges of 16 bits, as those employed in this work, the more suitable value for Nbits is 12 bits. Regarding
BS, the observation platform described in Section 3.1 captured the HSIs in a line-by-line fashion where
each sensed frame is composed of 1024 pixels. Hence, BS has been set to 1024 pixels in the experiments.
Table 2 collects the achieved CR and the employed number of bpppb for reconstructing the compressed
images. Higher CR and lower bpppb indicate higher data compression. Likewise, Tables 3 and 4 collect
the quantification of the information lost in the compression-decompression process through the SNR,
RMSE, PSNR, MAD and SSIM evaluation metrics. It is to be recalled that although the proposed
method independently compresses block of image pixels, MK, all these metrics have been calculated
using the entire images after being compressed–decompressed.

Table 2. Compression Results. Achieved CR and bppp for the six data sets.

Inputs Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Nbits BS CR CR bpppb CR bpppb CR bpppb CR bpppb CR bpppb CR bpppb

12 1024

12 15.87 1.01 15.99 1.00 15.97 1.00 17.05 0.94 16.13 0.99 15.73 1.02
16 22.56 0.71 22.81 0.70 22.82 0.70 24.43 0.65 22.83 0.70 22.16 0.72
20 28.47 0.56 28.88 0.55 28.98 0.55 31.05 0.56 28.75 0.55 27.78 0.58

Table 3. Compression Results. Achieved SNR, MAD, SSIM, RMSE and PSNR for Image 1, Image 2
and Image 3.

Inputs Image 1 Image 2 Image 3

Nbits BS CR SNR MAD SSIM RMSE PSNR SNR MAD SSIM RMSE PSNR SNR MAD SSIM RMSE PSNR

12 1024

12 45.87 1235.00 0.998 118.89 54.83 45.53 1318.00 0.998 110.46 55.46 45.72 946.00 0.998 96.43 56.65
16 43.88 1504.00 0.998 149.46 52.84 43.76 1621.00 0.998 135.52 53.69 44.39 1170.00 0.998 112.42 55.31
20 42.66 2245.00 0.998 171.96 51.62 42.67 1817.00 0.997 153.62 52.60 43.54 1343.00 0.997 123.93 54.47

Table 4. Compression Results. Achieved SNR, MAD, SSIM, RMSE and PSNR for Image 4, Image 5
and Image 6.

Inputs Image 4 Image 5 Image 6

Nbits BS CR SNR MAD SSIM RMSE PSNR SNR MAD SSIM RMSE PSNR SNR MAD SSIM RMSE PSNR

12 1024

12 34.99 1340.00 0.997 121.11 54.67 35.43 2429.00 0.990 239.26 48.75 34.79 2936.00 0.988 281.37 47.34
16 34.40 1557.00 0.997 129.54 54.08 34.84 2682.00 0.989 256.09 48.16 34.06 3496.00 0.987 305.97 46.62
20 34.00 1694.00 0.997 135.75 53.67 34.43 2916.00 0.988 268.47 47.75 33.55 3799.00 0.985 324.68 46.10

According to results shown in Tables 2–4, it can be observed that the proposed method is able to
reach very high compression ratios with a good rate-distortion for all tested configurations. As it can
be seen in Table 2, we can conclude that the achieved CR values are always higher than the minimum
desired CR established as input parameter. In particular, the achieved CR values are a bit higher for
Image 4, Image 5 and Image 6 than for Image 1, Image 2 and Image 3.

It is also demonstrated that the proposed method can provide very high compression ratios with
high rate-distortion ratios. The lowest achieved CR for a desired minimum CR = 12 is 15.73 (Table 2,
Image 6). In this case, the obtained SNR is 34.79, the PSNR is 47.34, the MAD is 4.48 % of the maximum
possible value and the RMSE is 281.37. For a desired CR = 16, the lowest achieved CR is 22.56 (Table 2,
Image 1) while the obtained SNR is 43.88, the PSNR is 52.84, the proportion of MAD with respect to
the maximum is 2.30 % and the RMSE is 149.46. Finally, for a desired CR = 20, the lowest achieved
CR is 27.78 (Table 2, Image 6), the obtained SNR is 33.55, the PSNR is 46.10, the MAD is 5.79% of the
maximum possible value and the RMSE is 324.68. In terms of distortions, including both luminance
and contrast masking terms, the results are very promising since the maximum and minimum values
reached for the SSIM metric were 0.998 and 0.985 respectively, which are very close to 1, the ideal SSIM
value.
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In conclusion, these compression ratios have been achieved losing little information, as shown by
the values obtained for the different quality metrics. It is also worth mentioning that the compression
performance of the proposed method is very solid and steady for the six different images.

3.3.2. Anomaly Detection Performance

Considering that the anomaly detection process employs the pc vectors extracted in the
compression stage, as it was explained in Section 2.2.3, simulations have been carried out using the
same configuration settings employed to assess the compression process in Section 3.3.1 (BS = 1024,
Nbits = 12 and desired CR = [12, 16, 20]). With respect to the input parameters related with the anomaly
detection process, α is set to 1% and n f to 100 hyperspectral frames, Fi, for all test cases.

Figure 7 shows the map of anomalous pixels obtained by the proposed method superimposed on
a panchromatic representation of the scenes to be tested to ease the result interpretations. It should
be mentioned that the results for CR = [12, 16, 20] are the same for all the 3 configuration settings.
In displays shown in Figure 7, lines in blue color represent the n f frames employed to estimate the
background distribution, green lines represent the hyperspectral frames, Fi, free of anomalous pixels
while red lines represent those frames identified by our proposal to be corrupted by anomalous pixels.
In addition, those anomalous pixels detected by our proposal have been also highlighted enclosing
them inside red circles. Compared to the RGB representations displayed in Figure 5, anomalous
objects detected in Image 1, Image 4, Image 5 and Image 6 match those anomalous entities highlighted
in Figure 5. For Image 2 and Image 3, the anomalous bodies to be detected have been successfully
identified but also other sparse brightness present in the scenes, as it can be seen in Figure 7b,c.
In general terms, the anomaly detection results are very accurate although the spatial resolution
covered by anomalous entities is very low and hence, they are composed of mixed spectral signatures.

(a) (b) (c) (d)

(e) (f)

Figure 7. Anomaly detection results for input parameters Nbits = 12, BS = 1024 and CR = [12,16,20].
Lines in blue color represent the n f frames employed to estimate the background distribution.
Green lines represent the hyperspectral frames free of anomalies. Red lines represent those frames
identified by our proposal to be corrupted by anomalous pixels. Pixels enclosed in red circles represent
the anomalous pixels detected by our proposal. (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4;
(e) Image 5; (f) Image 6.

As it can be concluded by results shown in Figure 7, one of the main advantages introduced
by our proposal lies on the on-board execution of the anomaly detection process, which permits
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the obtaining of a real-time performance and hence, a real-time identification of anomalous entities.
Moreover, the fact that the processes to be executed are based on the same operations gives an extra
advantage. Concretely, the results provided by the on-board execution of the anomaly detection
process are exactly the same as those obtained by off-line performing it once that the compressed data
packages are received and decompressed on the Earth surface. In order to clarify this comparison, we
introduce Figure 8. Processes that follow the blue arrow refer to the proposed methodology where both
compression and anomaly detection processes are performed on-board. On the contrary, processes on
the red arrow refer to this last alternative where the hyperspectral frames are compressed on-board
and the anomaly detection is performed on the Earth segment. Additionally, Figure 9 displays the
map of anomalous pixels obtained by this last approach. As it can be seen, the obtained results are
exactly the same as those provided by the proposed methodology, displayed in Figure 7, for any of
the minimum desired CR values. Based on this assessment, we can conclude that the fact of using
the same core operations in both compression and anomaly detection processes guarantee that the
compression process does not affect the posterior anomaly detection performance when it is off-board
executed using compressed–decompressed data. As a consequence, it permits tailoring to different
scenarios that impose different requirements, ensuring the same results in all situations.

Figure 8. Block Diagram of the processes involved in the proposed method (blue arrow) versus
those involved when images are on-board compressed, and the anomaly detection process is off-line
performed (red arrow).

(a) (b) (c) (d)

(e) (f)

Figure 9. Anomaly detection results using compressed–decompressed images for input parameters
Nbits = 12, BS = 1024 and CR = [12, 16, 20]. Lines in blue color represent the n f frames employed to
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estimate the background distribution. Green lines represent the hyperspectral frames free of anomalies.
Red lines represent those frames identified by our proposal to be corrupted by anomalous pixels.
Pixels enclosed in red circles represent the anomalous pixels detected by our proposal. (a) Image 1;
(b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5; (f) Image 6.

3.3.3. Computational Complexity

The greatest strength of our proposal is the ability to reuse operations when several hyperspectral
analysis techniques are running in the same piece of hardware. Consequently, the number of operations
to be executed considerably decreases compared to other approaches where not algorithmically related
processes are implemented. For clarity, let us set some examples using an hypothetical data set with
the same dimension as those images employed in this manuscript (nr = 1024, nc = 1024, Nb = 160).
Since the presence of anomalous pixels is very unlikely, the probability of anomalous Mk, x, is set
to 0.010, pAD has been rounded to 10 and pc is estimated as a function of the minimum desired CR
according to Equation (1).

In this context, Figure 10 displays the reduction of the number of FLOPs (in %) achieved by
our proposal (blue arrow in Figure 8) when compared with the classical approach in which the
lossy compression and the anomaly detection processes are executed as two independent algorithms
(red arrow in Figure 8). This comparison has been done for different values of BS and minimum desired
CR. As it can be seen, our proposal employs fewer FLOPs than if both processes were separately
implemented. The reduction in the number of FLOPs changes with the configuration used, achieving
a reduction of more than 50% in the best scenarios, and almost 35% in the worst one. Concretely,
the largest computational burden reduction, in terms of FLOPs, is obtained when decreasing the block
size used (BS) and increasing the minimum desired compression ratio (CR). The reduction in the
number of operations to be executed is expected to be translated into a reduction in the required
computational resources when following the methodology proposed in this work.

Figure 10. Reduction in the number of FLOPs (%) using the proposed methodology compared
with the execution of both the lossy compression and the anomaly detection processes as two
independent algorithms.

4. Discussions

In this work, we have approached the issue around the real-time processing of HSIs from a new
algorithmic perspective. Concretely, we have proposed a set of common core operations that extracts
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information from the HSIs useful for many hyperspectral analysis techniques. Therefore, this provides
several benefits, above all in the field of on-board hyperspectral imaging processing when some
time-sensitive applications must be executed in the same computing hardware device. First, it implies
less time and effort during the stage of hardware acceleration since the same product can be reused
for several algorithms targeting different applications. Secondly, it permits the execution of several
tasks at the same time with the advantage of sharing the most computationally costly operations,
thus reducing the overall computational cost and the required hardware resources. This last point
has been demonstrated in this work from results shown in Figure 10. As it can be seen, using a
common methodology for multiple analysis techniques could result in a reduction of more than 50%
of hardware resources. This fact would cope with the resource limitations (power, size, weight and
cost) of future space missions and emerging applications based on UAV.

In this context, we have particularly addressed the concurrent execution of lossy compression
for HSIs and the detection of anomalous pixels. Presently, the new-generation sensors can produce
continual or nearly continual stream of higher-dimensional data, which means that data volume
to be managed has drastically increased. For instance, images used for experiments in this
work were obtained in flight campaigns over large extensions of crop fields to monitor the plant
status. The acquisition data rate of the hyperspectral camera carried by our aerial platform is
up to 100 Mbytes per second, what results in almost 6 GB per minute. Accordingly, a 10 min
flight could result in more than 50 GB. For this reason, the size of the acquired data must be
drastically decreased for being able to rapidly transfer it, especially if real-time transmission is
desired. On this basis, the high data rate provided by new-generation sensors imposes the necessity
of carrying out a real-time compression process in order to efficiently store and/or transfer the
acquired data without unnecessarily accumulating high amounts of uncompressed data. Additionally,
high compression ratios are needed, but without losing essential information that could affect the
posterior imagery analysis.

In the field of precision agriculture, there has been a true revolution arising from the application of
new technologies to smart farming. Within the Agriculture 4.0 movement development, the European
H2020 project ENABLE-S3 (European Initiative to Enable Validation for Highly Automated Safe and
Secure Systems) introduced a case use about wildlife friendly agro-operation [47]. The goal of this
work was the automated safe driving of harvesters in agriculture fields. To do this, image frames
sensed by the acquisition system described in Section 3.1 were processed for detecting big obstacles
(animals, rocks, among others) in the route of the harvester in order to prevent fatal accidents. In this
context, anomaly detection is a good solution for detecting these obstacles since they represent entities
that spectrally differ significantly from the background pattern. Additionally, based on this definition,
anomaly detection analysis can be also used to detect some abnormal or suspicious behaviors in a lot of
applications, such as precision agriculture (pest and diseases in the crops), environmental monitoring
(flooding and hot spots), homeland security (gas leakages, illegal constructions), among others.

In this regard, if background spectral signatures are obtained in previous flights, changes in the
land surface could be detected as anomalous entities by measuring the differences among abundances
between bitemporal HSIs [57,58]. On the contrary, when background pixels are not known a priori,
pixels extracted from each image block, Mk, can be seen as local endmembers. In this scenario,
the proposed set of core operations could be executed in background using as input image the pool
of local endmembers being extracted from each image block, Mk. At the end, when all Mk have
been analyzed, we can obtain the global endmembers that can be sent to the Earth surface where the
abundances can be off-line estimated using the compressed/decompressed images.

Finally, we would like to highlight the existing trade-off between the causality in line-by-line
approaches and how to model the background distribution, which is the most important part in
any adopted solution for anomaly detection. Actually, very few publications are made in this field
where the anomaly detection issue is addressed in a line-by-line fashion [43,47,59,60]. In the solution
proposed in this manuscript, the background distribution is estimated from several of the first sensed
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hyperspectral image blocks, n f , under the assumption that they are free of anomalous signatures and
hence, fully representative of the background distribution. On this basis, enough n f hyperspectral
frames must be taken to ensure that all the spectral variability is covered and therefore generate a
truthful background model. However, this methodology could be not a feasible solution in very
heterogeneous scenarios, which may be one limitation of our proposal. In these cases, images could
be compressed using the compression algorithm and then being off-line processed to detect the
anomalous pixels.

To sum up, the methodology proposed in this work introduces the following advantages:

• High compression ratios and competitive rate-distortion compression performance where the
rarest objects are preserved. Other state-of-the-art solutions for hyperspectral lossy compression
behave as low-pass filters and tend to remove atypical elements [61–65].

• Line-by-Line performance. Since blocks of image pixels can be independently processed without
any alignment required, it avoids accumulating high amount of uncompressed data. Hence,
it permits reducing the amount of data to be processed and transferred. As a consequence,
the proposed method becomes an ideal solution for applications under tight latency constraints
or with limited available resources, such as memory, power and computational capabilities.
In addition, the proposed algorithm fulfills the requirements imposed by applications based
on push-broom/whisk-broom scanners, which permits commencement of the compression and
anomaly detection processes as soon as a block of pixels is sensed.

• Low computational complexity and high level of parallelism of the most computationally
demanding operations of the algorithm. This eases the hardware implementation of the proposal
and reduces the amount of required hardware resources.

• Reduction in the employed hardware resources. Since the proposed methodology is based
on a set of core operations common to several processes, the amount of hardware resources
needed for their execution are considerably less than if different state-of-the-art algorithms were
independently implemented.

• Accurate detection performance. The detection results obtained by the proposed method,
which is executed online together with the compression process, are exactly the same as those
provided when both the lossy compression and anomaly detection processes are executed as two
independent algorithms.

5. Conclusions

Traditionally, data gathered by remote-sensing platforms are downloaded to the ground segment
where they are off-line processed. It introduces several limitations related with the bandwidth
and latency of the communication and the available aboard data storage that seriously harm the
effectiveness of real-time applications. Accordingly, real-time on-board processing has experienced an
increasing interest within the remote-sensing field to mitigate these limitations. However, the high
data rate of the next-generation hyperspectral scanners and the limited computational resources,
power and storage space available on-board make increasingly difficult to perform on-board real-time
hyperspectral image processing when multiple applications are running at the same time onto the
same piece of hardware. To tackle this challenging issue, in this work we have introduced a new
methodology that enables the coexistence of multiple applications at the same time, reducing the
employed hardware resources as well as the execution times.

In particular, in this work we have verified the adequacy of the proposed methodology for
the concurrent execution of the lossy compression of HSIs jointly with the detection of anomalous
signatures. In addition, we have also proved the benefits of employing this methodology in terms of
number of operations. Concretely, we have verified that roughly 50% fewer operations are carried out
using our proposal than if both processes were separately implemented. Therefore, it can be inferred
than the required hardware resources may be also reduced in the same proportion. Additionally,
in order to evaluate the goodness of the proposed algorithm for the lossy compression and anomaly
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detection in HSIs, different experiments have been done using real data taken by an unmanned aerial
vehicle flying over different types of crop fields. These scenarios are very challenging since anomalous
entities cover an extremely reduced number of image pixels.

Future research lines are focused on extending this methodology to other fields such as target
detection, classification, change detection and dimensionality reduction.
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