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New Nonlinear Approaches for the Adjustment and Updating of a 

SAM 

 

Abstract 

 

We believe that any adjustment and updating process (AUP) should try to 
minimize the relative deviation of the new coefficients from the initial ones in a 
homogeneous way. This homogeneity would mean that the magnitude of this 
relative deviation is similar among the elements of each row or column, therefore 
avoiding the concentration of the changes in particular cells of the SAM. 
 
In this work, we propose some new adjustment criteria in order to obtain a 
homogeneous relative adjustment of the structural coefficients. We also test the 
usefulness of this proposal by comparing its results with the ones obtained by 
more standard approaches.  
 
 
 

Resumen 
 
 

En nuestra opinión, todo proceso de ajuste y actualización debe procurar 
minimizar las desviaciones relativas entre los nuevos coeficientes y los iniciales  
de la forma más homogénea posible. Esta homogeneidad haría que la magnitud de 
la desviación relativa fuera similar a lo largo de los elementos de una columna o 
fila, evitando así que los cambios en los coeficientes se concentren en celdas 
particulares de la Matriz de Contabilidad Social. 
 
En este trabajo, proponemos nuevos enfoques de ajuste que permiten obtener un 
ajuste más homogéneo de los coeficientes estructurales. Igualmente comparamos 
la utilidad de nuestra propuesta con métodos más estándar. 
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1 Introduction 

 

Many structural relations should be taken into account in any reasonable adjustment and 

updating process (AUP) of a social accounting matrix (SAM). These structural relations 

are mainly represented by ratios of different types such as technical coefficients or the 

proportion of the value of a cell in relation to its row or column total. When the AUP 

has as one of its aims the preservation of the initially observed structural relations, the 

procedure to be employed has to be able to maintain these technical, row or column 

coefficients as close as possible to the ones used as a starting point, avoiding the 

concentration of the changes in the coefficients in particular cells of the SAM. 

 

This is the case when the time elapsed since the estimation of the SAM is not long 

enough to allow for any significant structural change. In these cases we believe that any 

updating process should try to minimize the relative deviation of the new coefficients 

from the initial ones in a homogeneous way. This homogeneity would mean that the 

magnitude of this relative deviation is similar among the elements of each row or 

column. 

 

On the other hand, most practical efforts to update SAMs would generate very 

complicated nonlinear programs for which even obtaining a solution could prove to be 

very difficult, especially when updating very disaggregated accounts. This is especially 

the case when we introduce more than one coefficient in the objective function (e.g.: 

technical coefficients, row and column coefficients or some combination of all three). In 

many occasions this forces practitioners to introduce exogenous bounds to the different 

elements of the SAM matrix that bias the results in an artificial manner.  

 

This study has two main objectives. First, we propose different formulations that try to 

obtain a more homogeneous relative adjustment of the structural coefficients while 

reducing the non-linearity of the programs in order to ease obtaining a solution. These 

formulations combine the approach proposed by Matuszewski, Pitts and Sawyer (1964) 

with other adjustment criteria 

Second, we try to test the usefulness of this proposal by comparing its results with the 

ones obtained by more standard approaches (RAS and the minimum sum of cross 
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entropies criterion). We are able to show that these approaches tend to produce, under 

certain conditions, a less homogeneous pattern of coefficient adjustment than the ones 

we propose. 

 

The following section presents a brief summary of the main contributions found in the 

literature about the adjustment of SAMs, using mathematical programming, that have 

been considered in the comparison exercises. Section three summarizes our approaches 

in mathematical terms. Finally the results of the different comparisons carried out to 

evaluate the usefulness of our approaches as well as a short section with our main 

conclusions are presented. 

 

 

2 Updating and Adjustment Criteria 

 

A Social Accounting Matrix (SAM) is a square matrix X  of order  whose rows and 

columns represent separate accounts for which expenditures (columns) and receipts 

(rows) must balance. This balance can be expressed mathematically as follows: 

n

,    ik ki
k k

x x i= ∀∑ ∑  (1) 

where the element ijx  denotes the payments of account j to account i. Associated with 

each SAM we can define the following column coefficient matrix 1 ,( )ij i j nB b ≤ ≤=  as 

 ij
ij

ij
i

x
b

x
=
∑

 

If ,   1, 2, ,kj j
k

x jγ= = …∑ n

i

, the balance equation can also be expressed in terms of the 

column coefficients as 

 ,       ij j i
j

b γ γ= ∀∑  (2) 

 1,       .ij
i

b j= ∀∑  (3) 

Assuming that a previous column coefficient matrix 0B  (in time T=0) and  the sum of 

the elements of the columns, , of the same SAM in time t are known, the 

adjusting and updating process (AUP) consists of defining a new matrix 

0,   t
j jγ > ∀

tB  that 
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satisfies conditions (2) and (3). To this end we apply an adjustment criterion that 

involves a dissimilarity measure between matrices. 

 

We now describe the main characteristics of the two approaches considered in this 

paper as a benchmark for the comparisons with our proposals; the RAS and the 

minimum sum of cross entropies (MSCE) criterion. Both represent a classical and a 

very recent AUP respectively, that are very closely related to each other. Moreover we 

summarize the main characteristics of the approach proposed by Matuszewski, Pitts and 

Sawyer (1964) which serves as basis of our proposals. 

 

 

2.1 The RAS and the MSCE criteria 

 

Traditionally, the AUP has been solved using the RAS method which consists of 

obtaining a matrix tB  that meets balance conditions (2) and (3), such that 

 

 0tB RB S=  

 

where R and S are diagonal matrices of order n whose elements are all non null. That is, 
0

1 2 1 2( , ,..., ),  ( , ,..., ),  and , ,t
n n ij i ij jR diag r r r S diag s s s b rb s i j= = = ∀ . Terms r and s can be 

given economic interpretations but necessarily incorporate the assumption that the 

effects identified are all uniform across sectors. 

 

Bacharach (1965) extended this matrix adjustment criteria, altering the initial RAS 

approach stated by Stone (1962). He formulates a new problem, the biproportional 

adjustment problem, which consists of searching for a matrix ,( )ij i jB b=  that satisfies 

the balance conditions (2) and (3), such that 

 
0

  0,   ,

lim

t
ij

t q

q

b i

q

j

B R B S
→∞

≥ ∀

=
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where { } { } and  q qR S  are sequences of diagonal matrices of order n. A solution to this 

problem that can be expressed in the RAS form is called an interior solution, the rest are 

called frontier or contour solutions.  

 

It has been proved (Bacharach, 1965; Macgill, 1977) that, if there exists a solution to 

the biproportional adjustment problem, it is unique. Also, if for each ijx  non null 

i
k i

kγ γ
≠

≤∑  is verified, then the RAS method converges and obtains tB  as its solution. 

Evidently, the RAS solution verifies that 00 0t
ij ijb b= ⇔ = . 

 

The minimum sum of cross entropies (MSCE) criteria (Golan, Judge and Robinson, 

1994; McDougall, 1999; Robinson, Cattaneo and Moataz El-Said, 2000) consists of 

solving the following problem 

 

 
( ) 0

0
, 0

min ln         
ij

ij
ij

i j b ij

b
b subject to

b≠
∑   (2) and (3). (4) 

 
The objective function in (4) is the sum of the cross entropies corresponding to the 

columns of matrices B  and 0B . If we interpret each column j of matrices B  and 0B  

as the a priori probability distribution, the cross entropy for ( ) (  and   j ij ji
b= = )0 0

ij i
bb b , 

where b  represents the a priori knowledge, is given by 0
j

 

 
0 0 0

0
0

/ 0 / 0 / 0

ln ln ln
ij ij ij

ij
ij ij ij ij ij

i b i b i bij

b
b b b b

b≠ ≠ ≠

= −∑ ∑ ∑ b  

that is, the difference between the expected values, ( ) ( 0ln lnjb Ε

j
0
jb

)jbΕ − , which is 

considered to be  a discrimination measure between b  and  (Golan, Judge and 

Miller, 1996). Both the RAS and the MSCE are specific cases of the weighted minimum 

sum of cross entropies (WMSCE) criterion, which consists of solving the following 

problem 
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( ) 0

0
, 0

min ln         
ij

ij
j ij

i j b ij

b
w b subject to

b≠
∑   (2) and (3) (5) 

 

where  are the weights used. The MSCE criteria can be derived by making  

in the WMSCE formulation. The RAS method is actually an algorithm to solve the 

WMSCE criteria when 

jw 1,jw j= ∀

 

   
t
j

j tw
γ
γ

=  

 

where t t
ij j

ij j

x tγ γ= =∑ ∑  (McDougall, 1999). This relationship between the RAS and 

the WMSCE criteria has also been demonstrated in the past (Macgill, 1977).  Extending 

the results obtained by McDougall (1999) to the WMSCE the optimal solution to this 

problem is the following one: 

 

 01 , ,
i j

jw
ij ij

j

b b e i
µ γ

−

= ∀
Ω

j  

where 

 
0

1
k j

j

j

w
kj

k

b e
µ γ

−
Ω =

∑
   . 

 

This expression is a result of the Lagrange optimality conditions for problem (5). The 

values µi  are the multipliers associated to constraints (2).  

Operating with the definition of a column coefficient we can derive that the 

relationships of the previous proposition also apply when we substitute the coefficients  

 and b  by the matrix terms jb 0
j

0 and  ij ijx x  respectively. 

 

 

2.2.- Adjustment techniques defined as mathematical programmes 
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Matuszewski, Pitts and Sawyer (1964) were the first to propose an adjustment technique 

expressed as linear programs. Their problem was formulated as follows: 

 

( ) 0
0

, 0

min 1
ij

t
ij

i j b ij

b
b≠

−∑  

subject to: 

( )

0

0

0

0

0
0

              

             

1 2       i,j / 0
2

ij

ij

t t t
ij j j

i b

t t t
ij j i

j b

t
ij

ij
ij

b p

b p

b
b

b

γ

ρ

≠

≠

=

=

≤ ≤ ∀ ≠

∑

∑  

being: 
0 0

0

:  technical coefficient matrix obtained from   

:  technical coefficient matrix obtained from   

:  vector of effective production in 0

:  vector of effective production in t

:   sum of t

ij

t t
ij

j

t
j

t
j

b X

b X

p

p

γ he elements of column j

:   sum of the elements of row it
iρ

 

 

Their last group of restrictions were introduced to avoid the fact that the changes in the 

coefficients tended to concentrate in the larger elements of the intermediate transaction 

matrix. It is clearly arbitrary but it helped to increase the number of basic variables thus 

giving more realistic solutions. 

 

Since the new vector of production was known to Matuszewski, Pitts and Sawyer 

(1964), they switched from using coefficients to flows taking the inverse of the new 

known values of effective production as weights. They converted this nonlinear 

formulation into a linear one by including two new positive variables for each of the 

elements to be updated, avoiding the existing nonlinearity in the objective function due 

to the calculation of absolute values.  
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This need to set bounds to the variables is present in many other examples. From the 

more open formulations of Harrigan and Buchanan (1984) to the ones proposed by 

Zenios, Drud and Mulvay (1989) and Schneider and Zenios (1990). In fact the need of 

these bounds in twofold. First, it helps the programing solver to find a solution, and 

second, it helps to avoid corner solutions that are too extreme. However, once we 

impose these restrictions it is very easy to remain at the minimum or maximum values 

imposed, thus reducing the freedom to find the optimal solution. Our proposal shows 

there are alternative ways to find new coefficients without imposing such strong 

restrictions on the updating process.  

 

 

3 The models proposed 

 

In this section we will give account of the notation, definitions and adjustment criteria 

needed to describe the AUP models proposed in this paper, followed by a presentation 

of the specific formulations used.  

 

 

 

3.1 Notation, definitions and adjustment criteria 

 

Being  , we consider the following sets, matrices and functions. ( )1 ,1ij i m j n
X x

≤ ≤ ≤ ≤
=

 

 

 

SETS: 
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{ }
{ }
{ }
{ }
{ }
{ }
( ){ }

1,2,...,

1, 2,...,

/ 0

/ 0

/ 0  and  is the cardinal of set ,

/ 0  and m  is the cardinal of set J ,

, / 0,  ,  

k ik

k kj

j ij j j j

i ij i j i

x ij

I m

J n

I i I x

J j J x

I i I x n I I j J

J j J x J i

S i j x i I j J

+

+

=

=

= ∈ ≠

= ∈ ≠

= ∈ ≠ = ∀ ∈

= ∈ ≠ = ∀ ∈

= ≠ ∈ ∈

∑
∑

I

 

 

MATRICES: 

Row coefficient matrix, ( )1 ,1
 :x ij i m j n
A a

≤ ≤ ≤ ≤
=  

 
   0

:

0        

ij
k ik

ikij k

x
if x

xa

otherwise


≠





∑∑  

Column coefficient matrix,  ( )1 ,1
:x ij i m j n

B b
≤ ≤ ≤ ≤

=

 
   0

:

0        

ij
k kj

kjij k

x
if x

xb

otherwise


≠





∑∑  

Note that  .
X XX A BS S S= =

 

 

FUNCTIONS:  

Given the m  matrix  x n ( ij )X x=  with ,X XS S=  we define 

     ( )
( )

1
, x

ij ij

i j S ij

x x
F X

x∈

−
= ∑  

     ( )
( )

2
, x

ij
i

i j S ij

x
F X

x
µ

∈

= ∑ −                 where                1

i

ij
i

j Ji ij

x
m x

µ
∈

= ∑  

     ( )
( )

3
, x

ij
j

i j S ij

x
F X v

x∈

= ∑ −            where             1

j

ij
j

i Ij ij

x
v

n x∈

= ∑    
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     ( )
( ) { }( )

4 1
,

1 1ij ij
i j I J n

F X d d +
∈ × −

= − −∑ −  

                  where 
( )  if  ,

1

ij
x

ijij

x
i j S

xd
otherwise


∈= 




 

     ( )
( ) { }( )

5 1
,

1 1ij i j
i j I m J

F X d d +
∈ − ×

= − −∑ −  

     ( )6 max ij ij

ij
ij

x x
F X

x
−

=  

 

Given the matrix  the adjustment problem is to determine a matrix 

 with a structure similar to 

( )0 0

1 ,1
,ij i m j n

X x
≤ ≤ ≤ ≤

=

n
( )

1 ,1

t t
ij i m j

X x
≤ ≤ ≤ ≤

= 0X  satisfying certain constraints. The 

problem is formulated as an optimization problem where the objective function is a 

linear combination of the  functions applied to particular coefficient matrices, 

replacing 

iF

X  by the corresponding matrix when 0t = . We now consider the following 

adjustment criteria formulation (the non-zero weights determine different criteria): 

 

 

 

 

ADJUSTMENT CRITERIA FORMULATION: 

- Formulation 1: 

 ( ) ( ) ( ) ( ) (1 11 1 12 2 13 1 14 3min  G t t t
t

X X X )tX
X F A F A F B F Bπ π π π= + + +  

- Formulation 2: 

 ( ) ( ) ( ) ( ) (2 21 1 22 4 23 1 24 5min  G t t t
t

X X X )tX
X F A F A F B F Bπ π π π= + + +  

- Formulation 3: 

                ( ) ( ) ( ) ( ) (3 31 1 32 6 33 1 34 6n  G .t t t t
t

X X X
X F A F A F B F Bπ π π π= + + + )X

mi  

 

Note that formulation 1 with 13 11 and 0,  3k kπ π= = ∀ ≠  corresponds to the method of 

Matuszewski, Pitts and Sawyer (1964) for the column coefficient estimation problem. 
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The adjustment problem is  

 

 ( )min  G      X subject to X χ∈  

 

where  for some i  and certain weights iG = G ikπ , and χ  is the feasible set defined by 

certain constraints on X . These constraints can be formulated as: 

 

 ( )( )1 1 2 2 ...i i i i in in ix x xρ ρ ρ α+ + + = ≤ ≥  

 ( )( )1 1 2 2 ...j j j j nj nj jx x xγ γ γ+ + + = ≤ ≥ β  

 

The problems solved here only consider the column coefficients, due to their 

importance in IO analysis. They try to achieve a more homogeneous adjustment of these 

coefficients by adding new objectives to the ones used by Matuszewski, Pitts and 

Sawyer (1964). These new objectives aim to reduce the disparities in the relative 

changes of the coefficients in each of the columns. The new previously mentioned 

adjustment criteria generate the following problems: 

 

Problem 1:  This problem, called DESV1, is defined by 11 12 0π π= = , 13 14 1π π= =  and 

constraints (2) and (3).  In this case the new element of the objective function tries to 

minimize the dispersion of the relative changes of each column coefficient with respect 

to the average relative change of all the elements of its column. 

 
( )( )

0

0 0
i,j ,

min  
x x

t t
ij ij ij

j
S i j Sij ij

b b b
v

b b∈ ∈

−
+ −∑ ∑  

subject to 

0

1

j

t
ij

j
i Ij i

b
v

n b∈

=
j

∑  

    
t
ij j i

j

b iγ γ I= ∀ ∈∑  

1     t
ij

i
b j J= ∀ ∈∑  

This problem can be formulated as the following linear program 
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( )
( )i,j

min 
x

ij ij ij ij
S

y z u v
∈

+ + +∑  

subject to  

( )
0

0      ,
t
ij ij

ij ij X
ij

b b
y z i j S

b
−

= − ∀ ∈  

( )0      ,
t
ij

j ij ij
ij

b
v u v i j S

b
− = − ∀ ∈ X  

0

1

j

t
ij

j
i Ij i

b
v

n b∈

=
j

∑  

     
i

t
ij j i

j J
b iγ γ

∈

I= ∀ ∈∑  

1        
j

t
ij

i I
b j

∈

J= ∀ ∈∑  

( ), , , 0     i,jij ij ij ij Xy z u v S≥ ∀ ∈  

 

Problem 2: This problem, called DESV2, is defined by 21 22 0π π= = , 23 24 1π π= =  and 

constraints (2) and (3). It uses the variables that capture the absolute value of the 

relative changes, in order to reduce the differences in the column coefficient relative 

changes between contiguous rows. 

 

  
( ) { }( )( )

0

10
i,j ,

min  1 1
x

t
ij ij

ij i j
S i j I m Jij

b b
d d

b +
∈ ∈ − ×

−
+ − − −∑ ∑  

where 
( )0   if  ,

1

t
ij

x
ij ij

b
i j S

d b

otherwise


∈= 




 

subject to 

      t
ij j i

j

b iγ γ I= ∀ ∈∑  

 1        t
ij

i
b j J= ∀ ∈∑  

 

This problem can be formulated as the following linear problem 
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 ( )
( ),

min  
X

ij ij ij ij
i j S

y z u v
∈

+ + +∑  

subject to  

( )
0

0      ,
t
ij ij

ij ij X
ij

b b
y z i j S

b
−

= − ∀ ∈  

( ) ( ) ( ) { }( )1 1    i,jij ij i j i j ij ijy z y z u v I m+ + J+ − + = − ∀ ∈ − ×  

( )0     i,jij ij Xy z S= = ∀ ∉  

( ), , , 0     i,jij ij ij ij Xy z u v S≥ ∀ ∈  

     t
ij j i

j

b iγ γ I= ∀ ∈∑  

1        t
ij

i
b j J= ∀ ∈∑  

 

Problem 3: This problem, called MMAX, is  defined by 31 32 330,  1π π π= = =  and 

34π π= , where π is the cardinal of , and constraints (2) and (3). This problem 

includes a minimax criterium in order to minimize the maximum relative change among 

the elements of each column. 

XS

 

 
( ) ( )

0 0

0 0,i,j

min  max
X

X

t t
ij ij ij ij

i j SS ij ij

b b b b
b b

π
∈

∈

− −
+∑  

subject to 

      t
ij j i

j

b iγ γ I= ∀ ∈∑  

 1        t
ij

i
b j J= ∀ ∈∑  

 

This problem can be formulated as the following linear problem 

 

 ( )
( ),

min  
X

ij ij
i j S

y z uπ
∈

+ +∑  

subject to 

 ( )
0

0      ,
t
ij ij

ij ij X
ij

b b
y z i j S

b
−

= − ∀ ∈  
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 ( )     i,jij ij Xy z u S+ ≤ ∀ ∈   

      t
ij j i

j

b iγ γ I= ∀ ∈∑  

 1        t
ij

i
b j J= ∀ ∈∑  

 ( ), 0     i,jij ij Xy z S≥ ∀ ∈  

 

Other problems could obviously be formulated as combinations of these three. 

 

 

 

 

3.2 Analysis of the models proposed 

 

In this section we proceed to present and analyze the results of the different 

comparisons prepared to measure the usefulness of the models proposed. All the 

applications presented in this work used the SAM of Mozambique prepared by 

Robinson, S.  Cattaneo, A.  and  El-Said, M (2001). All the models have been solved 

combining the optimization and computational capabilities of GAMS and MATLAB 

respectively, using the link developed by Michael C. Ferris (1999). 

 

The cases prepared correspond to problems 1 to 3 in the previous section, and are 

compared with the RAS and MSCE methods. Using the SAM of Mozambique as a 

starting point, we generated new SAMs not allowing for a decrease in the different row 

and column totals and imposing the value of the maximum increase for these values. 

These upper limits ranged between 10% and 100%, while the lower limit was always 

0%. For each of these ranges the number of problems generated was 3000. For each of 

these 3000 cases the five adjustment criteria (MSCE, RAS, DESV1, DESV2 and 

MMAX) were solved. We therefore obtained 3000 column coefficients matrices for 

each method, totaling 15000 matrices for each upper limit. 
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The following measures have been used in order to compare the coefficients obtained 

from each of these 15000 new column coefficient matrices with the original coefficient 

matrix: 

 

1. Mean absolute difference: 

 ( ) ( )
0

,0 ,
ij iji j

x x
MAD X X

m n

−
=

×

∑
 

2. Mean relative difference: 

 ( )
( ) 0

0

0,
0 ,

x

ij ij
i j s

ij

x x
x

MRD X X
m n

∈

−

=
×

∑
 

3. Maximal absolute difference: 

 ( )
( )

0 0

,
, max ij iji j

MXAD X X x x= −  

 

4. Maximal relative difference: 

 ( )
( ) 0

0
0

0,
, max

X

ij ij

i j S
ij

x x
MXRD X X

x∈

−
=  

 

For each of these 15000 new column coefficient matrices associated with each upper 

limit, these six measures have been used to compare the three methods proposed 

(DESV1, DESV2 and MMAX) with MSCE and RAS. This comparison was done 

calculating the ratio between both groups of values, thus obtaining six groups of 3000 

ratios (DESV1/MSCE, DESV2/MSCE, MMAX/MSCE, DESV1/RAS, DESV2/RAS, 

MMAX/RAS) for each comparison measure and upper limit.  

 

Assuming each set of 3000 ratios -obtained for each ratio, upper limit and measure- 

constitute a normal distribution sample, the interval containing  the mean of the 

distribution, with a 0.05 significance level, was calculated. In all cases, both interval 

limits were located on the same side of the value 1. 
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Table 1 shows the results obtained by the comparisons carried out between all these 

methods showing the upper limit of the mentioned interval. This upper limit 

corresponds with the worst value for our proposed adjustment methods.  

 

For example, the value 0.771 located in the column corresponding to the 3000 SAMs 

generated with a 30% maximum increase in the value of the column and row totals, and 

the row showing the ratio of the mean relative differences between DESV1 and MSCE, 

is the upper limit of the interval of this ratio. This shows that the mean relative 

difference obtained with our method DESV1 is at least a 32,86% lower than the same 

comparison criteria obtained with the MSCE method. 
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Table 1 

Results obtained with the proposed methods 

 

 

100% 75% 50% 40% 30% 20% 10%
Maximum absolute difference

desv1/msce 1,261 1,359 1,577 1,733 1,920 2,154 2,413
desv2/msce 1,277 1,367 1,580 1,743 1,926 2,166 2,429
mmax/msce 1,297 1,383 1,563 1,722 1,839 1,995 2,142

desv1/ras 1,112 1,135 1,221 1,292 1,360 1,448 1,567
desv2/ras 1,129 1,145 1,227 1,307 1,370 1,465 1,588
mmax/ras 1,145 1,157 1,214 1,297 1,314 1,352 1,395

Mean absolute difference
desv1/msce 1,311 1,320 1,359 1,253 1,275 1,303 1,353
desv2/msce 1,350 1,342 1,368 1,289 1,301 1,318 1,372
mmax/msce 1,472 1,481 1,510 1,464 1,428 1,391 1,395

desv1/ras 1,153 1,121 1,116 0,987 0,986 0,984 1,003
desv2/ras 1,194 1,143 1,125 1,021 1,011 0,996 1,018
mmax/ras 1,278 1,236 1,219 1,157 1,110 1,054 1,033

Maximum relative difference
desv1/msce 0,982 0,962 0,938 0,972 0,940 0,935 0,979
desv2/msce 1,723 1,442 1,200 0,979 0,945 0,946 1,021
mmax/msce 0,858 0,768 0,696 0,706 0,625 0,524 0,435

desv1/ras 1,103 1,092 1,099 1,140 1,142 1,194 1,345
desv2/ras 1,861 1,694 1,361 1,144 1,155 1,215 1,411
mmax/ras 0,945 0,847 0,786 0,791 0,718 0,637 0,587

Mean Relative difference
desv1/msce 1,044 1,000 0,939 0,826 0,771 0,690 0,579
desv2/msce 1,415 1,261 1,110 0,835 0,789 0,721 0,637
mmax/msce 1,473 1,371 1,280 1,026 0,959 0,879 0,815

desv1/ras 1,015 0,937 0,867 0,749 0,707 0,637 0,545
desv2/ras 1,403 1,199 1,035 0,756 0,722 0,667 0,601
mmax/ras 1,434 1,281 1,178 0,923 0,874 0,811 0,769
 
Note: msce=minimum sum of cross entropies; desv1=first method proposed (average relative change by column); desv2= second method proposed 

(relative changes between contiguous rows); mmax= third method proposed (minimax criterium). 
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If we take the first two measures into account, the maximum and mean absolute 

difference, Table 1 shows worse results for the methods we propose. This is a 

reasonable result, since our methods try to minimize the relative differences between 

the column coefficients instead of the absolute ones. We can observe that the results 

obtained by our methods are closer to the ones obtained for RAS than the ones reached 

by the MSCE method. This is actually also the case for the rest of the measures 

considered. If we consider the maximum absolute difference separately, our three 

methods show a similar behavior. They start with large ratios, but they show a clear 

declining path as soon as we increase the changes in the row and column totals. 

 

However, for the mean absolute difference, no uniform tendency can be observed. In 

the comparisons with the MSCE method the ratios ameliorate up to and including 40% 

changes in the row and column totals, except for the MMAX method. If we observe the 

ratios for the comparisons with the RAS method, the tendencies are more disparate. 

Again, the differences between RAS and our methods are very small, specially for the 

range between 10% and 40%.  

 

If we now consider the measures of maximum and mean relative differences, our 

methods proposed always show better results, for the range of changes between 10% 

and 40%, with the exception of the ratios relating to the first two methods proposed 

(DESV1 and DESV2) with respect to RAS for the maximum relative difference, and the 

ratio comparing the MMAX method with the MSCE for the mean relative difference 

and the 40% interval. Moreover, for the maximum relative difference, the MMAX 

always shows better results compared to both the MSCE and the RAS methods. The 

DESV1 and DESV2 methods always show better values only when compared to the 

MSCE method.  

 

4.- Conclusions 

 

This work is based on the conviction that any updating process should try to minimize 

the relative deviation of the new coefficients from the initial ones in a homogeneous 

way. This homogeneity means for us that the magnitude of this relative deviation should 

be as similar as possible among the elements of each row or column. Therefore, any 
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measure of the degree of homogeneity should be defined in terms of relative 

differences.  

 

In this paper, we have compared the ability of different adjustment methods to preserve 

the structure of the original column coefficient matrix in a homogeneous way. In order 

to carry out this objective we have used the maximum and the mean relative difference 

comparison measures. However, we also dealt with other comparison indicators to 

broaden the scope of the study. 

 

Our results clearly show the fact that, for deviations equal to or less than 40% between 

the row and column totals of the original and he final SAMs, the methods we propose -

DESV1, DESV2 and MMAX- allow us to obtain a more homogeneous adjustment than 

with the other two methods taken into account, RAS and MSCE. We should take into 

consideration that these better results in terms of homogeneity –lower maximum and 

mean relative differences- are accompanied by very similar results, in terms of the mean 

absolute difference, to the ones achieved by RAS. Therefore, we have been able not 

only to obtain a more homogeneous adjustment for an important range of cases, but also 

to keep the mean of the absolute changes near to the ones observed by the RAS method. 

 

Should we not feel very satisfied with the results in terms of the mean and maximum 

absolute differences, we should bear in mind that our proposals could be very easily 

modified to combine the use of both absolute and relative measures. This could be done 

either by imposing limits to the maximum changes in the absolute differences or by 

incorporating new elements in our objective function that allow us to weight differently 

the absolute and relative differences in the coefficients, turning the problem into a 

multiobjective one.  

 

The methods we propose are especially suited for cases in which the row and column 

totals of the new SAM diverge within the indicated limits. We should however take into 

account that any of the considered adjustment processes can be separated into two 

stages. The first stage could consist of allowing the total of the columns and rows of our 

SAM to change in the same proportion, which would correspond to the minimum of all 

the changes envisaged. The problem is a trivial one since the new column coefficients 
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would be exactly equal to the coefficients of the original matrix. The next stage would 

adjust the SAM obtained in the previous stage in order to obtain the final SAM. The 

changes in the total column and row sums involved in this second stage are necessarily 

smaller than the ones needed to be considered should we omit the first stage. This 

procedure allows for the increase in the number of situations where our methods can be 

considered to be more effective. 

 

Since our main objective consists of maintaining the relative structure of the 

coefficients as stable as possible, the methods we propose should also be mainly applied 

to situations where this behavior makes economic sense. This could be the case of those 

National Statistics Institutes that use IO tables increasingly for their yearly national 

accounts calculations. The results we present in this paper, could be of some help to 

those in charge of these efforts and, in general, to anyone that needs to update a SAM or 

IO table without incorporating any structural change in the coefficients.  They can also 

be easily adapted to the AUP of Input-Output Tables. 
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