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Abstract

Cost—effectiveness analysis of medical treatments search for choosing an “op-
timal” treatment among a set of k > 2 alternative treatments 71, ..., Ty, for a given
disease. It is imposed that the cost and the effectiveness of the treatments are
taken into account in the selection procedure.

We focus the problem as a Bayesian statistical decision problem, present their
elements and illustrate the procedure. Further, we discuss some difficulties aris-
ing in cost—effectiveness analysis when heterogeneity is present in the cost and
effectiveness data. Heterogenous data implies in cost—effectiveness analysis the
need of considering special statistical techniques such as Bayesian meta—analysis
and Bayesian probabilistic clustering.

Keywords and phrases. Cost and effectiveness of a treatment, predictive reward
distribution of a treatment, optimal treatment, utility function.

1 Introduction

Health Economics is an area of the field of Economics with an intensive recent de-
velopment. The major concerns of researchers in this area is the comparison between
medical treatments based on their effectiveness and cost. It is accepted that health
resources are limited and effectiveness comes at a price. As control over health expen-
diture has increased over the last thirty years, the term cost-effectiveness (CEA) has

gained in popularity.
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This increasing focus on CEA of new or existing treatments has been led by the
development of health technology assessment (HTA) agencies, such as the National
Institute for Health and Care Excellence (NICE) in the UK, which seeks to provide
guidelines for Health care providers and decision makers about which treatments should
be covered in a context of scarce economic resources.

In Europe, since 2008, the European Medicines Agency has been working closely
with Health Technology Assessment (HTAs) Bodies in different Member States, as well
as with the European Network for Health Technology Assessment (EUnetHTA), with
the objective of generating relevant data for regulators, HTA bodies and other interested
parties.

In the United States, the federal government has provided financial support for
health technology assessment since the early 70s. The US Office of Technology Assess-
ment (OTA), the Medicare Coverage Division with the Center for Medicare and Med-
icaid Services (CMS), and the Agency for Healthcare Research and Quality (AHRQ)
are some federal institutions that undertake or fund cost or cost-effectiveness analyses
of medical technologies and interventions (see (1) and (2)).

In other countries, such as Australia or Canada, it is regulated that pharmaceutical
companies should submit their products to CEA (3).

All the research efforts on cost—effectiveness analysis are spread out on topics that
range from the formal definition and measurement of effectiveness and cost of a medical
treatment to the development of tools for treatment comparison. The statistical decision
theory plays an central role for understanding CEA and in this paper we do briefly
summarize some achievements and statistical difficulties in this area.

The rest of the paper is organized as follows. In Section 2 we consider the evolution of
the statistical tool for cost effectiveness analysis starting from the direct consideration of
the random variables cost ¢ and effectiveness e of a treatment, to the more sophisticated
notion of net benefit. In Section 3 we introduce the cost—effectiveness analysis as a
decision problem, identify the reward of a treatment, introduce two utility functions
and the notion of optimal treatment. Section 4 describes the statistical problems that
arise when the samples are not homogenous.

2 Statistical tools for cost-effectiveness analysis

For a time the incremental cost-effectiveness ratio (ICER) was the basic tool for
cost-effectiveness analysis (4). Let Ac = Fc¢; — Ecy and Ae = Fe; — Eey be the
difference of the expectation of cost and effectiveness of two given treatments 77 and
T,. Then, the ICER for the treatments is defined as the ratio

A
ICERy, — A—i,

whose meaning is the increment of cost per unit of increment of effectiveness of treat-
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ments 77 and Ty. Therefore, it is assumed that cost and effectiveness (¢, e) are random
variables with a partially unknown distribution P(c,e).

In a cartesian plane with axes (Ae, Ac) quadrant I (QI) correspondons to Ae >
0, Ac > 0, quadrant 1T (QII) to Ae < 0, Ac > 0, quandrant IIT (QIII) to Ae < 0,Ac <0
and quandrant IV (QIV) to Ae > 0,Ac < 0. For ICER;3 in QI treatment 7} is more
costly and more effective than T5, in QII 77 is more costly and less effective than T, in
QIIT 77 is less costly and less effective than T5, and in QIV T is less costly and more
effective than Ty. It is clear that when ICE Ry is in QII Ty is preferred to 77 and if it
in QIV then T3 is preferred to T;. However, when ICFE Ry, is in either in QI or QIII
the decision is not so evident. In those cases a subjective input on the cost per unit of
increment of effectiveness is necessary.

When the distribution P(c, e) is not completely known IC'E R, has to be estimated
from a sample of cost and effectiveness of patients under treatment 7 and 7T5. Let
¢ = (City ey Ciny) and €; = (¢i1, ..., Cip,) for i = 1,2, be such a samples. An estimation
of IC E Ry, that can be very inaccurate is given by

where ¢; = 2?1:1 ¢ij/n; and €; = Z;“:l e;j/n; are the samples means. Suggestions and
criticisms on how to measure the uncertainty on the ICERy5 estimation have been
given by many authors. For instance, when the distribution is completely unknown a
bootstrap methodology is advocated by Chaudhary and Stearns (5) and Briggs et al.
(6). For further discussion on interpretive problems of the ICER see (7) or (8).

An extension of the ICER for comparing two treatments is the incremental net
benefit (IN Bsy;) introduced by Stinnett and Mullahy (9). This is defined as

]NBlg = R12A€ — AC,

where R, is the monetary value assigned to the unit of increment of effectiveness of
treatments 77 and T,. There are obvious relationships between the ICER;5 and the
IN By5 that we do not discuss here. An estimation of the IN By, that can be very
inaccurate is given by

fy = Ris(€1 — &) — (&1 — C2).

The sample variance is a mensure on the uncertainty of the estimator I, that is,
2 2 2 2 2 o2
R 2561 + SC@ - 2R125€,‘5617‘i

Var(flg\ng) = Z ! 5

n:
i=1 v

2

Ci

are the sample variances of the effectiveness and cost, and r; the estimator
of the linear correlation.

where s2 | s
=1
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A third tool in cost—effectiveness analysis is the cost—effectiveness acceptability curve
(CEAC) introduced by Van Hout et al. (10). This is a sampling evaluation of I5;, that
is, this notion is defined as the function

@(Ry2) = Pr(I1z > 0|Rys)

for R15 > 0. We note that for a given Ry,
(p(ng) = / déldégdégdél
c

where C' is the set given by C' = {(él, €,C1,02) : Ro1(éa — 1) — (Ga — &) > O}.

The interpretation of the curve ¢(Ry2) for a given Rj5 > 0 is the sampling probability
of the event C' as the sample means €1, €, ¢y, G vary in their sampling spaces. In the
literature this curve is utilized for choosing an “optimal” treatment: T is optimal if
©(Ry2) > 1/2. We note that this implies that treatment T} is chosen regardless the
data c; = (¢i1, ..., Cin,) and €; = (¢j1, ..., Cin,) for i = 1,2 we observed. This suggests that
CEAC is not an appropriate tool for choosing optimal treatment.

The IN B is the most interesting tool although it is restricted to the case of com-
paring two treatments. For comparing more than two treatments a more general tool
is needed. This extension can be formulated using the notion of net benefit z of a
treatment 7. This was introduced in Moreno et al. (11) and can be considered as an
extension of the INBijs. For a given R > 0, the net benefit z is a random variable
defined by

z=Rxe—c,

where R means the quantity the health provider is willing to pay for the unit of effec-
tiveness. This way, for a given set of alternative treatments 71, ..., Ty, k > 2, and R > 0,
we have the net benefits 21, ..., z; and treatment comparisons is just the comparison of
the distributions of the net benefit of the treatments conditional on R. To do that
we need the use of a more sophisticated decision theory methodology that we briefly
describe in the next Section.

3 Cost—effectiveness analysis as a decision problem

A general theory for CEA follows by focusing this problem as a decision problem.
This is the aim of the book by Moreno, Véazquez—Polo and Negrin (12).

Let us assume that for a given disease we have k > 2 alternative treatments 77, ..., T},
, and the problem is that of choosing an optimal treatment based on their random cost
and effectiveness (¢, e). The element of this decision problem are i) a finite decision
space D = {d,...,d;}, where d; is the decision of choosing treatment Tj, ii) the re-
ward of each decision which is given by the probability distribution of (¢, e), that is,
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{P(c,elbh), ..., P(c,e|0}, where §; is a parameter tight to treatment T; for j =1, ..., k,
and iii) a utility function U(c, e), the utility we obtain for (¢, e).

We note that z(R) can be considered a utility function, that is U; (¢, €| R) = z. Under
this utility function the utility of the reward P(c, e|f;) is

Ui(P(c,e|6;)|R) = //prew dcde—//(*Pcd() ) dc de.

This utility depends on 6; and hence the utilities of the rewards { P(c, e|61), ..., P(c, e|0x}
cannot be compared. Thus, we need to eliminate this parameter from the distribution
P(c, e|f;). The Bayesian way requieres two steps:

1.- We first complete the sampling model P(c, e]f;) to the Bayesian model

M; : {P(c,el0;),7(0;)},

where 7(6;) is a prior distribution for the parameter ;. This prior distribution may
contain subjective prior information on 6;. If prior information on 6; is not available
an objective prior, as the reference prior (13), can be utilized. Then, for model M; and
sample ¢; = (¢, ..., ¢in,;) and e; = (¢, ..., ¢in,) the updated posterior distribution of 6;

is given by
1 Plcij, eq500; 0;
m(0ilci, e;) = (Héizl (€, 4169) 7(6)
J (T Plei, e6:)) w(0;)db;
2.- We compute the updated reward distribution of (¢, e) for treatment 7}, which is
obtained as

P(c,elc;, ;) :/P(c,e\@i)ﬂ(9i|ci,ei)d91.

Then, the utility of the reward P(c, e|c;, e;) is given by

Ui(z|R) = //eP (c,elci, e;) dcde—//cP (¢, e|ci, ;) de de,

that is, it is a linear function of the expected cost and effectiveness.
For a given R, the optimal treatment is 7} if

Ui(P(c,elcj,ej)|R) = n%ax Ui (P(c,el|ci, e;)|R).

.....

Example Let us consider two treatments T} and T with normal reward distributions
given by

P(c,elf;) = N(c|pei, 02) N (elptei, 02),
where (f1ci, 02, ptei, 02), i = 1,2, are unknown parameters. For the samples ¢; =
(Ci1y -es Cin,) and €; = (¢, ..., Cin,;) and priors

ﬂ-(ﬂcia Uci) xX —, ﬂ-(,ufei-, Oei) xX —,
ct Oci
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the posterior distributions are given by

2 <2 )(n—1)/2 o2
ColE §?) = 1o O\ (misg)" VR 1 _masy
W(/“LCHO'CAC’H si) =N <MCZ|C’“ nl) 2(n=3)/2T (m;l) UZL exXp 202

ct

and

2 <2 \(n—1)/2 g2
_ 9 _ oy (nisg) 1 MiSei

T(Meiy Oci|€iy S5 ) = N (ptei €, o3y /2 (mi—1y i X o ’
(1 €3, 57) (Hes] n; )2(7173)/21" s P 202,

o= L i g2 1N )2 = LS 2 1N -
where ¢ = - >0 cij, g = 5o 200l (e —G)% &= - D 00L, ¢y, and g = - 30T (e

)2
Then, the predictive distribution of the cost ¢ of treatnent T; is given by the gener-
alized Student ¢ distribution

—ni/2
P i) = K(n; 2 i 2 ’ — G 2
led) = K 2) (st + e -ap)
where ( ) 1o
I (% n,
K ni,82- _ 2 i niSQ- (n;—1)/2
( 01) F(anil)F(%) (nz+1)1/2( cz) ’

and a similar expression for P(ele;) replacing in this expression s with s% and ¢; by
é;.
It can be seen that

Ui (P(clc;)|R) = //c P(c,e|c;, e;)dede = &,

and analogously, U;(P(ele;)|R) = ¢;. Then, for a given R the optimal treatment is 7}
if the inequality
Re —c¢ > Reéey— o,

holds, and 75 otherwise.

Non linear utility functions have been considered in the literature. Let Z; and Z
be the random net benefit of treatments 7; and T, with rewards P(z1|R) and P(z2|R).
A nonlinear utility function Us(z|R) is given by

U2(21|R) = PI'(ZQ S 21|R), U2(Z2|R) = PI‘(Zl S Z2|R)

The optimality criterium is now that treatment 77 is optimal for a given R if the
inequality
Pr(Zy > Zs|R) > Pr(Zy > 71| R)

holds, and T» otherwise. This nonlinear utility function is explored in Chapter 4 in
(12).

We note that the optimal treatment for the utility function U;(z|R) do not neces-
sarily coincide with the optimal treatment for Us(z|R) as the following simple example
shows.
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Example Let 77 and 75 be two treatments with the same deterministic cost ¢ = 0, and
effectiveness given by a discrete variable with values 0, 1 and 2, as a health indicator
of bad, good and excellent status. The distribution of the effectiveness of treatment 7

is given by
0.1, if e; =0,
P1(€1) = 05, if €1 = 1,
0.4, if e =2,

and the distribution of the effectiveness of treatment 75 by

0.3, if e =0,
PQ(SQ) = 017 if (S ].7
0.6, if e =2.

The rewards of treatments 77 and T, are certainly different although for the utility
function U (z|R) the utility of Py(z1|R) and Ps(z2|R) is the same, that is, the expecta-
tions of z; and zy are Ep (21|R) = Ep,(22|R) = 0.13R. This implies that T} and Ty are
equivalent treatments for any R > 0.

However, for the utility function Us(z;|R), the utility of P;(z1|R) is

Pr(Z, > Z5|R) = Pr(e; > e3) = 0.63,

and the utility of Py(23|R) is Pr(Zy > Z1|R) = Pr(ey > ¢;) = 0.69.
Therefore, under the utility function Us(z;|R) treatment Ty is preferred to T3 for
any R > 0.

4 The between sample heterogeneity in CEA

A difficulty in CEA comes from the fact that the samples of cost and effectiveness
c; and e; often come from h different Health care centers, so that they are an aggregate
of samples. That is ¢; = U?Zlcij and e; = U?':leij., where ¢;; = (¢, ..., Cin,,;) and
eij = (€i1, ..., €in,;) are samples from hospital j. The distribution of (c;;,e;;) might
change as j changes, and hence we might have h different sampling distributions.
Therefore, the heterogeneity adds uncertainty on the model for ¢ and e, and a statistical
procedure to account for this model uncertainty is called for.

Let {P(cij,e450;), 7 = 1,...,h} be the sampling distributions conditional on the
centers, and {P(c,e|c;;,e;5), j = 1,..., h} the predictive distributions of the centers.
The quantity of interest is the predictive distribution of (¢,e) of the treatments and
hence for each treatment T; the distributions {P(c, e|c;;,e;5), 7 = 1,..., h} have to be
pooled. The statistical procedure for pooling these distribution is known as meta—
analysis.

Thus, we strongly recommend the use of meta—analysis in CEA for heterogenous
data.
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On the other hand, it might be that some of the models {P(c;;, e;;|6;), 7 = 1,..., h}
have the same parameter. Thus, the point is to reduce the number of models by
clustering those that have the same parameter. This is known as probabilistic clustering.
A Bayesian approach to clustering the samples with the same distribution is based on
product partition models introduced by Hartigan (14) and further explored in (15), (16)
and (17).

Misleading meta—inferences can be obtained when clustering is ignored, as illustrated
in (18). Therefore, clustering the samples before to carried out a CEA is a good practice.
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