

May 11-12, 2020 | Manchester, UK

Date: November 18, 2019.

Abstract Acceptance Letter

Mrs. Julia Claudia Mirza Rosca, University of Las Palmas de Gran Canaria, Spain. Greetings from Scientific Federation!

We cordially invite you to attend the annual "2nd World Congress and Expo on Biomaterials" to be held during May 11-12, 2020 at Manchester, UK. We welcome you to join us and share your knowledge and view on the theme "Historical Development & Classification of Biomaterials" We would like to inform you that your abstract has been accepted by the organizing committee. In this regard, on behalf of the Organizing Committee, we are welcoming you to join us and give Poster Presentation on "Titanium-Tantalum alloys with bioactive surface for orthopaedic implants" and "Biocompatibility of High Entropy Alloys: Science and Design".

The 2nd Global Congress and Expo on Biomaterials is being conducted at Manchester. Historical Development & Classification of Biomaterials is a scientific congregation which brings together researchers, scientists, key decision makers, and industry professionals in the same physical space for a brief yet intense period of discussion, collaboration, and addressing related problems in research. We believe this conference will be a highly rewarding educational and networking experience for all. Additionally, we encourage you to take this opportunity to explore the many facets of Manchester and to experience the unique UK culture.

We look forward to seeing you in Manchester, UK. For more details about Biomaterials PS: <u>https://scientificfederation.com/biomaterials-2020/index.php</u>

With our best wishes,

Vijay Kumar, Scientific Committee Operator Biomaterials Organizing Committee Scientific Federation 4th Floor, Ozone Complex, Panjagutta Hyderabad-500082 India

Note: This invitation is only to attend Biomaterials Conference which is during May 11-12, 2020 in Manchester, UK.

Webinar on Biomaterials

July 22-23, 2020

Day 1 July 22, 2020 CST (ASIA) GMT+8				
Starts @ Beijing Time Zone				
10:00-10:30	Introduction			
	Keynote Sessions			
10:30-11:00	Title: Development Process of Biopolymer Materials			
	Liu Jiping, Beijing Institute of Technology, China			
11:00-11:30	Title: Development of Organic Patch for Wound			
	R. Sree Padmini, Sri Ramakrishna Engineering College, India			
11:30-12:00	Title: Xyloglucan Based Mucosal Nanovaccine for Prevention of Brucellosis			
	Vandana Bharat Patravale, Institute of Chemical Technology, India			
12:00-12:15	Sessions Break			
	Invited Sessions			
12.15.12.40	Title: Natural Biomaterials for Biomedical Application			
12.15-12:40	V. Sugantha Kumari, Auxilium College, India			
	Title: Comparison of the Ability of Two Border Molding Materials in Recording the			
12.40-13.05	Functional Lateral Throat Form in Completely Edentulous Mandibular Arches and In			
12.40-13.03	Vivo Study			
	Priyanka Tiwari, Sumandeep Vidhyapeeth University, India			
13:05-13:50	Sessions Break			
	Title: Development of Biocompatible Natural Polymer as Next Generation Delivery			
13:50-14:15	System of Natural Therapeutics			
	Kunal Pal, Jadavpur University, India			
	Title: Will Confirm Soon			
14:15-14:40	Francesco Guido Mangano, Sechenov First State Medical University of Moscow,			
	Russia			
	Title: Will Confirm Soon			
15:40-16:05	Krzysztof Jastrzębski, Lodz University of Technology, Institute of Materials Science			
	and Engineering, Poland			
16:05-16:30	Title: Will Confirm Soon			
	Mindaugas Viskontas, University of Aberdeen, UK			
Few Slots Available				
Day 2 July 23, 2020 CEST (EUROPE) GMT+1				
Starts @ London Time Zone				
09:30-10:00	Introduction			
Keynote Sessions				

	Title: Biofabrication of Advanced Organotypic Tissues in Membrane Biohybrid					
10:00-10:35	Systems					
	Simona Salerno, ITM-CNR, Italy					
10.25 11.10	Title: Biocompatibility of High Entropy Alloys: Science and Design					
10.55-11.10	Julia Mirza Rosca, University of Las Palmas de Gran Canaria, Spain					
11:10-11:25	Sessions Break					
	Title: An Approach of Based Design Optimization Study of Dental Implant with					
11:25-12:00	uncertain Parameters					
	Abid Fatma, Univ. ArtoisULR4515 - LGCgE, France					
12.00-12.30	Title: Titanium-Tantalum Alloys with Bioactive Surface for Orthopaedic Implants					
12.00 12.00	Julia Mirza Rosca, University of Las Palmas de Gran Canaria, Spain					
12.30-13.00	Title: Will Confirm Soon					
12.30-13.00	Joaquín Rams Ramos, Rey Juan Carlos University, Spain					
13:00-13:30	Sessions Break					
	Title: Microfluidic Technologies Come in Handy in Research on					
13:30-13:55	Material Synthesis, Isolation and Processing					
	Abrishamkar Afshin, Swiss Federal Institute of Technology, Switzerland					
13:55-14:20	Title: Will Confirm Soon					
	Bacakova Lucie, Czech Academy of Sciences, Czech Republic					
14:20-14:45	Title: Will Confirm Soon					
	Atanasio Serafim Vidane, University of Sao Paulo, Brazil					
14:45-15:10	Title: Will Confirm Soon					
	Igor de Oliveira Roversi, Pontifical Catholic University of Sao Paulo, Brazil					
15:10-15:35	Title: Will Confirm Soon					
	Silvio Henrique de Freitas, University of Sao Paulo, Brazil					
	Keynote Talk					
15:35-16:10	Title: A Side-Effect Free Chemotherapy for Treating Cancer by Directed Gene Delivery					
	and a Prodrug					
	A. C. Matin, Stanford University School of Medicine, USA					
	Little: Half a Century and Billions of Dollars Later, is the Charnley Hip Implant Still the Dest We Here?					
16:10-16:45	Best we have ?					
	Thomas webster , Northeastern University, USA					
16 45 15 10	Dental Implant Abutmant					
10:45-17:10	Les Kalman, The University of Western Optoria, Consde					
Les Kalilian, The University of Western Ontario, Canada						
	Few Slots Available					

Titanium-Tantalum alloys with bioactive surface for orthopaedic implants

E.V. Lucero Baldevenites¹, J.C. Mirza Rosca¹, N.R. Florido Suárez¹, P.P. Socorro Perdomo¹, A. Pascu², E. Stanciu² ¹Mechanical Engineering Department, University of Las Palmas de Gran Canaria, Campus Universitario Tafira, Edificio Ingeniería, 35017, Las Palmas de Gran Canaria,Spain viviana.lucero@ulpgc.es ²Transilvania University of Brasov, Materials Engineering and Welding Department, 29 Eroilor Blvd., 500036, Brasov, Romania

Achieving a stable bone-implant interface is an important factor in the long-term outcome of joint arthroplasty. It was demonstrated that the bone-bonding ability of a material could be evaluated by testing the materials in a simulated body fluid (SBF) and in these conditions, the capability of forming hydroxi-apatite on the surface of the material has been considered to indicate its bone-bonding potential.

The paper focus on the study of the bone-bonding capability of three new titanium alloys with 5%, 15% and 25%Ta which were soaked in 10M aqueous NaOH solution then were immersed in a simulated body fluid (SBF). The materials were studied before and after the immersion by optical metallography, microhardness, open circuit potential and electrochemical impedance spectroscopy.

The methallographical aspects of the samples surfaces after alkali-treatment and before immersion in SBF demonstrated the presence of two phases: one soft and one hard. The same results were obtained by microhardness surface scanning. The open circuit potential shows a good stability of the alloys in SBF.

Analysis of the impedance spectra was done using the Boukamp nonlinear least square fitting procedure. The EIS spectra exhibited two-time constant system suggesting the formation of a two-layer oxide film on the alloys surface, i.e. a porous outer oxide and a barrier inner oxide.

It is therefore expected that the new Ti-Ta alloys subjected to this appropriate treatment could form an apatite layer via TiO₂ gel formation on their surface in the body's environment, and bond to living bone through the apatite layer.

Keywords: Ti-Ta; Metal alloys; Metallographic characterization, Microhardness, Orthopaedic; Open circuit potential; Biocompatibility; Simulated body fluid

Webinar on Biomaterials EUROPE

Session

Details

The Biomaterials and Applications Webinar (BioApp-2020) is the only 100% inclusive, 100% virtual event designed for the international biomaterials community to share the latest techniques, best practices and to grow your network. At BioApp-2020, attendees can network directly with each other and exhibitors. Our goal is to bring together thought leaders and best infrastructure resources available so attendees can build their own resource networks. Our virtual event operates exactly like a traditional conference with keynote speakers in a dedicated theater, breakout rooms, an exhibitor hall, networking rooms, breakout tracks, scheduled demos in our exhibit hall, and education resources.

2nd Global Congress & Expo on

Biomaterials

July 22-23, 2020 Manchester, UK

Universitatea TRANSILVANIA din Braşov

MAT

TITANIUM-TANTALUM ALLOYS WITH BIOACTIVE SURFACE FOR ORTHOPAEDIC IMPLANTS

E.V. Lucero Baldevenites¹, J.C. Mirza Rosca¹, N.R. Florido Suárez¹, P.P. Socorro Perdomo¹, A. Pascu², E. Stanciu²

¹University of Las Palmas de Gran Canaria, Mechanical Engineering Department, Campus Universitario Tafira, Edificio Ingeniería, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain, email: <u>viviana.lucero@ulpgc.es</u>

²Transilvania University of Brasov, Materials Engineering and Welding Department, 29 Eroilor Blvd., 500036, Brasov, Romania

	Alloy	Со
ERIALJ	Ti5Ta	

	Components	Composition by weight (wh%)	
Апоу		Weighted	Measured
TIETO	Ti	95,0	95,0
11219	Та	5,0	5,0

Ti1ETa	Ti	85,0	84,8
IIISIa	Та	15,0	15,2
Ti2FTa	Ti	75,0	74,6
TIZ5Ta	Та	25,0	25,4

OPEN CIRCUIT POTENTIAL

THREE POINT BENDING TEST

ELECTROCHEMICAL IMPEDANCE

According to microstructure tests result, two crystal structures were observed, a hard one and a soft one. An increase of tantalum content has an effect on increasing material hardness.

Young's modulus and mechanical properties of TiTa alloys greatly depend on tantalum content, resulting in much lower Young's modulus than pure titanium.

The open circuit potential of the TiTa alloys stabilizes at a value after a certain period of inmersion in the Ringer's solution. This phenomenon is due to the rapid formation of the TiO₂ and Ta₂O₅ passive layer and its stabilization.

EIS was used to investigate the corrosion resistance of TiTa alloys, all alloys presented a capacitive behavior, typical of passive systems. Corrosion resistance best results were obtained by the TiTa alloy with the highest tantalum content.

TiTa alloys studied have excellent biocompatibility and corrosion resistant which suggest great possibilities in biomechanical applications.