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Resumen en español

Presentación y contexto

Vivimos en un mundo cada d́ıa más digital. Allá donde miremos, podemos ob-
servar todo tipo de dispositivos electrónicos capaces de ofrecerte información
y de capturar datos acerca de tu entorno: desde los clásicos televisores y or-
denadores hasta relojes de pulsera digitales pasando por teléfonos móviles o
tablets. Todos ellos equipados con pantalla, funciones de red y diferentes sen-
sores que recogen, entre otros, tu posición. Adicionalmente, existen grandes
cantidades de sensores repartidos por cualquier lugar del planeta capaces de
leer y transmitir continuamente todo tipo de propiedades, como temperatura,
humedad, presión, radiación o desplazamiento, entre otros. De nuevo, todos
ellos con una posición asociada. Todo esto genera enormes y siempre crecientes
volúmenes de datos georreferenciados que gestionar.

Entenderemos por dato georreferenciado o espacial aquel que lleva asociado
una posición concreta en el globo terráqueo. Para esta asociación es general-
mente utilizado un sistema de referencia espacial (SRS, en sus siglas en inglés)
que fija esa posición en base a una tupla de coordenadas. Estas coordenadas
pueden ser geográficas (latitud, longitud y altura) o bien cartográficas proyec-
tadas (x,y,z).

Los datos georreferenciados pueden dividirse en dos grandes categoŕıas: datos
vectoriales y datos ráster. Los datos vectoriales son variables geométricas, pun-
tos, ĺıneas y poĺıgonos, a las cuales se les asocia una posición en el globo. Los
datos ráster, en cambio, relacionan esa posición del globo a ṕıxeles de una ima-
gen o celdas de una rejilla regular. Entre los datos ráster podemos encontrar
fotograf́ıas aéreas y satelitales, mapas cartográficos o modelos digitales de ele-
vación.

Este trabajo se centra principalmente en los datos vectoriales. Éstos son
mayormente generados utilizando tres tipos de tecnoloǵıa: los sistemas de posi-
cionamiento global (GPS, en sus siglas en inglés), la teledetección o remote sen-
sing y los sistemas de información geográfica (GIS, en sus siglas inglesas). Los
GPS son sistemas que, mediante triangulación con satélites de posición siempre
conocida, determinan al instante y con alta precisión la ubicación terrestre de
un dispositivo dado. Esta ubicación puede ser usada en solitario en forma de
punto o bien combinarla con otra variable dada. En remote sensing, los datos
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espaciales se obtienen utilizando sensores que analizan su entorno sin establecer
contacto con él. Estos sensores pueden ser activos, enviando una señal contra el
entorno, o pasivos, limitándose a capturar información. Las técnicas más cono-
cidas de teledetección para datos vectoriales son de tipo activo: el RADAR y
GPR para medición de distancias en entornos aéreos y subterráneos utilizando
ondas de radio, el LIDAR para medición de distancias utilizando haces de luz,
y el SONAR para medición de distancias generalmente en medios subacuáticos
utilizando ondas de sonido. Las respuestas en estos casos suelen venir en forma
de nubes de puntos de volumen y densidad muy variable. Finalmente, los GIS
son sistemas de información que combinan elementos hardware y software para
que un usuario pueda crear, recolectar, editar, organizar, convertir, modelar,
almacenar y consultar datos espaciales. Estos sistemas van desde plataformas
completas tanto abiertas como privativas (ESRI ArcGis, QGis, Grass, Autodesk,
Capaware) hasta bibliotecas de funciones (proj4, GDAL, GeoTools, LasTools)
pasando por servidores de datos georeferenciados (Geoserver, MapServer).

Al manejar grandes conjuntos de datos vectoriales, surgen problemas para su
almacenamiento, su transmisión a través de la red y su visualización. Esto es es-
pecialmente cierto cuando se pretende, desde un dispositivo portable, recolectar
los datos o bien visualizar los mismos. Los dispositivos móviles tienen memoria
y capacidad de cómputo limitada, lo que hace imposible intentar almacenar en
ellos un set entero de datos de cualquier ı́ndole. Además, tienen un tamaño de
pantalla limitado que hace que se deba cuidar cuánta información se muestra en
cada momento para no saturar al usuario con datos que se superponen el uno al
otro. Finalmente, existe también una limitación en forma de datos móviles, que
habitualmente tienen un coste para el usuario. Esto hace que interese limitar al
máximo la cantidad de datos a transferir y hacerlo únicamente bajo demanda
del usuario.

En esta tesis doctoral se plantean nuevos métodos para procesar grandes
conjuntos de datos espaciales, con vistas por un lado a formar estructuras que
faciliten la transmisión selectiva y progresiva de los mismos y, por otro lado, a
mejorar el entendimiento que de los mismos tenga el usuario.

Objetivos y organización de la tesis doctoral

En esta disertación se plantea el estudio de nuevos métodos para el procesado de
grandes conjuntos de datos georreferenciados o Big Geo Data. En estos métodos
se considerarán la entrada de datos, su acceso y almacenamiento eficiente, su
transmisión por red y su adecuada visualización. Además, deberán garantizar
la coherencia en la representación y muestra de los resultados, no debiendo éstos
mostrar singularidades o degeneraciones con respecto a los datos de entrada.

Para un almacenamiento, transmisión y visualización eficientes, se deben
introducir estrategias de nivel de detalle que permitan representar diferentes
versiones más o menos detalladas de un mismo volumen de datos, de forma que
sean intercambiables en función de la perspectiva o de la importancia desde
el punto de vista del usuario de cada tipo de datos. Además, se requerirá de
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una técnica de streaming que permita descargar esos datos bajo demanda del
usuario. Citando como ejemplo un aplicación de globo virtual con un conjunto
de datos georeferenciados para consultar, se deberá añadir detalle y por tanto
descargar más datos de aquellas zonas en las que el usuario decida navegar,
requiriendo técnicas de decisión inteligentes.

Sabiendo esto, se plantean como objetivos principales de esta tesis los si-
guientes:

1. Estudiar en la literatura cient́ıfica técnicas clásicas de preprocesado de
datos georreferenciados en niveles de detalle (LoD), de retransmisión por
streaming de los datos y otras de interés como tratamiento de nubes de
puntos o mallado triangular. El objetivo es filtrar las caracteŕısticas más
sobresalientes de cada método.

2. Proponer dos técnicas para el preprocesado de grandes conjuntos de datos
georeferenciados, generando estructuras que permitan optimizar su trans-
misión. Estas estructuras además deben permitir la generación de di-
ferentes niveles de abstracción de los datos de cara a una visualización
progresiva de los datos desde cualquier dispositivo.

3. Plantear un esquema de streaming y visualización adaptable a cualquier
dispositivo de escritorio o móvil. Este esquema deberá permitir una trans-
misión progresiva e incremental del conjunto de datos a partir de un sub-
conjunto reducido de los mismos. Con cada nueva transmisión, se incre-
mentará el nivel de detalle del conjunto en el dispositivo. De este diseño
se deberán incluir detalles de implementación aśı como un análisis y vali-
dación de resultados.

4. Determinar indicadores objetivos que demuestren la validez y eficiencia de
los métodos planteados aśı como realizar comparativas con otros métodos
similares del estado del arte.

Aparte de estos cuatro objetivos primarios, se busca también como objetivos
adicionales de este trabajo de investigación publicar y contrastar los resultados
alcanzados con la comunidad cient́ıfica a través de congresos especializados,
en primer lugar; y el poder realizar transferencias del conocimiento generado
durante el mismo a empresas y entidades del sector tuŕıstico, geomático o de
cualquier otra ı́ndole que pueda beneficiarse del mismo, en segundo lugar. Estas
transferencias se harán en forma de prototipos o aplicaciones informáticas conc-
retas que ayuden en las actividades diarias de dichas empresas y entidades. De
esta forma se busca que la sociedad se beneficie de este trabajo de investigación.

Atendiendo a estos objetivos y en función de las contribuciones que se han
aportado durante este trabajo de investigación, este documento se ha dividido
en un primer caṕıtulo de introducción a la tesis y en ocho caṕıtulos posteriores
de contenido temático. Cada caṕıtulo incluirá una sección sobre el estado del
arte del tema a tratar y tras él, la contribución concreta realizada. Como gúıa
para el lector, se facilita un resumen de cada uno a continuación:
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Caṕıtulo 2: Este caṕıtulo se centra en la primitiva punto, por ser la más
común y de la cual existen más y mayores conjuntos de datos vectoriales. Se
presenta la problemática que supone intentar mostrar a la vez muy pocos o bien
demasiados puntos, sobre todo si se mostrarán simbolizados con un nombre o
una imagen (marker). En base a esta problemática, se propone un algoritmo
de preprocesado orientado a la transmisión eficiente y visualización adecuada
de datos puntuales. Con el objeto de dar soporte a datos que puedan tener
escala global, se propone una estructura de nivel de detalle con árbol quadtree
en lugar de las más comunes octree o binaria. Para un env́ıo progresivo de los
datos, se estudian dos estrategias diferentes: sorting y clustering. Finalmente,
se implementa una arquitectura cliente-servidor para la transmisión de datos a
visualizadores móviles de globo virtual de estos datos.

Caṕıtulo 3: En este caṕıtulo se exploran las ĺıneas, un dato vectorial fre-
cuente en datos geográficos, de redes y de ciudades inteligentes. Utilizando
datos georeferenciados de redes subterráneas de abasto, gas y electricidad, se
explora la mejor manera de presentar dichos datos en un escenario de globo
virtual de forma que el usuario interprete correctamente que se tratan de redes
subterráneas. Para ello, técnicas del estado del arte como el alpha-blending o las
herramientas de excavación son investigadas. Aśı mismo se propone una nueva:
los ditches, consistentes en la adición de una malla con forma semiciĺındrica
alrededor de la ĺınea a representar. La idoneidad de cada técnica se investiga
mediante encuestas de experiencia de usuario con usuarios con y sin experiencia
técnica en la materia.

Caṕıtulo 4: En este caṕıtulo se exploran los poĺıgonos, la tercera primitiva
vectorial y que es fácil de encontrar en modelos 3D o en parcelas de catastro,
entre otros ejemplos. También se presenta aqúı por primera vez en el documento
la tecnoloǵıa LiDAR, que permite generar nubes de puntos potencialmente muy
grandes capaces de representar detalladamente la realidad. Utilizando ambos, se
presenta un método capaz de generar modelos 3D de una ciudad a partir de una
representación de la ciudad como nubes de puntos. Los modelos son generados
utilizando el estándar CityGML, pensado espećıficamente para poder almacenar
diferentes niveles de detalle de los datos de entrada. Se contempla que los
modelos sean compatibles con el nivel LoD2 del estándar, para lo cual se diseña
un algoritmo de preprocesado capaz de identificar el tipo de tejado de cada
edificio entre 5 posibles categoŕıas y generar el modelo correspondiente. Esto
permite reducir mucho el volumen de datos a mostrar sin perder los detalles clave
de cada edificio, lo que abre la puerta a su uso en simulaciones y aplicaciones
orientadas a smart cities, realidad virtual y aumentada.

Caṕıtulo 5: Las nubes de puntos, que se utilizaron en el anterior caṕıtulo
para generar modelos 3D, tienen un gran número de aplicaciones prácticas
por śı solas, que generalmente implican el segmentado previo de cada punto.
Además, son en śı mismas grandes conjuntos de datos georeferenciados. En este
caṕıtulo se presenta un nuevo método de segmentación de puntos pertenecientes
al terreno para nubes generadas en vuelos de adquisición LiDAR. Se basa en la
creación de patches, agrupaciones de puntos de altura mı́nima. De cada patch se
extraen diferentes caracteŕısticas, las cuales se utilizarán en un árbol de decisión
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para determinar si pertenecen o no al terreno. La evaluación de la idoneidad de
este algoritmo se ha realizado sobre benchmarks para los cuales hay resultados
previos de otros algoritmos del estado del arte. Finalmente, se presenta un caso
de uso de los resultados generados por el algoritmo para la creación de mallas
triangulares de elevación de terreno multiresolución con diferentes niveles de
detalle.

Caṕıtulo 6: Los puntos aún no clasificados como terreno representarán
otros objetos del mundo real, como vegetación, edificios, coches o farolas. Adi-
cionalmente, puede suceder que la nube no haya sido adquirida en vuelo sino
desde el suelo. En este caṕıtulo, se adapta el algoritmo de suelo visto en el
caṕıtulo anterior para su uso en nubes urbanas adquiridas con un sistema Li-
DAR terrestre. Además, se presenta un algoritmo de preprocesado progresivo
no supervisado de los puntos restantes en las clases coche, poste, vegetación
y edificio. La evaluación del método se realiza sobre un benchmark de nubes
urbanas terrestres contra varios algoritmos del estado del arte.

Caṕıtulo 7: En este caṕıtulo se continúa con la segmentación de nubes
de puntos, proponiendo un algoritmo capaz de categorizar los diferentes com-
ponentes de un corredor eléctrico. La novedad con respecto a los algoritmos
anteriores del estado del arte estriba en que no se limita sólo a clasificar to-
rretas y cables, sino que entra en un detalle superior identificando cables gúıa,
cables conductores, puentes y cadenas de aislamiento. El método se evalúa en un
benchmark contra un algoritmo de estado del arte, y adicionalmente se propone
un benchmark propio para la evaluación. Una vez identificados estos elemen-
tos, se proponen también métodos para generar modelos vectoriales 3D de cada
cable y cada torre a partir de la clasificación. Esto se hace con la doble idea
de hacer más eficiente el env́ıo por red de los datos del corredor y para facilitar
el uso práctico de estos datos en inspección de ĺıneas eléctricas y prevención de
incendios forestales.

Caṕıtulo 8: Todos los métodos para preprocesado de nubes de puntos vistos
en los anteriores caṕıtulos suponen nubes de puntos que representen fielmente la
realidad. Sin embargo, en muchas ocasiones las nubes de puntos incluyen ruido,
que conviene eliminar antes de poder utilizarse. En este caṕıtulo, se identifican
diferentes tipos de ruido presentes en nubes de datos LiDAR y se propone una
metodoloǵıa para el filtrado conjunto de todos los tipos de ruido observados.
Cada tipo de ruido es tratado por un detector espećıfico, lo que permite lanzar
detectores de diferentes tipos de ruido a la misma nube en paralelo y combi-
nar cada resultado individual para ofrecer una solución conjunta. Además, se
crea un benchmark abierto de nubes de puntos con todos los tipos de ruido
identificados para la validación de los resultados.

Caṕıtulo 9: En este caṕıtulo se introduce, por último, un visor ligero de
escritorio para nubes de puntos desarrollado en C++ como respuesta a necesi-
dades surgidas del trabajo en el resto de caṕıtulos. En el visor propuesto se
implementan los controles de cámara necesarios para la navegación. Se añade
una estrategia de nivel de detalle para la visualización basada en celdas, a cada
una de las cuales se le aplica un factor de diezmado diferente en función del área
de pantalla y de la inclinación de vista. Finalmente, se introducen tres modos
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de selección de puntos con vistas a su posible edición. Dos de ellos, rectángulo
y caja, son conocidos y comunes en el estado del arte. El tercero, caja centrada,
es una modificación del modo de caja propuesto con el objetivo de limitar la
selección al objeto deseado. La experimentación introducida busca encontrar la
mejor forma de ajustar el tamaño de la celda y los factores de área de pantalla
e inclinación de vista en la estrategia de LoD elegida.

Finalmente, en un décimo caṕıtulo se resumen las aportaciones y conclu-
siones obtenidas durante esta tesis doctoral y las futuras ĺıneas de investigación
que se han abierto a ráız de este trabajo. Además, se incluyen los diferentes
casos de uso y aplicaciones comerciales a los cuales se han transferido alguna de
las diferentes propuestas aqúı expuestas.

Aportaciones realizadas

En las siguientes ĺıneas se presentan las aportaciones clave que se han realizado
como resultado de este estudio:

En primer lugar, se introdujo una técnica espećıfica para generar estructuras
en nivel de detalle a partir de conjuntos de puntos que pudiera potencialmente
contener información de todo el globo terráqueo. Debido a esta caracteŕıstica
particular, se decide basar la estructura en un árbol quadtree asociado a una
división en rejilla regular del planeta (DGGS) en lugar de en los más comunes
árboles binario, kd y octree, usados para generar LoD sobre conjuntos de puntos.
Para generar los diferentes niveles de detalle del conjunto, se utilizaron dos es-
trategias diferentes. La primera, sorting, escoge un criterio de ordenamiento de
los datos y reparte los puntos existentes entre los diferentes nodos no-hoja crea-
dos en el árbol. Esta estrategia está orientada a streaming progresivo, en la cual
se añade detalle del mismo set con la navegación sin crear ningún dato nuevo.
La segunda estrategia, clustering, genera un metadato indicando el número de
puntos existente en un área concreta del mapa en representaciones poco deta-
lladas del conjunto. Esto aumenta ligeramente el número de datos a transmitir
pero favorece una visualización limpia del set de datos.

En segundo lugar, se desarrolló una arquitectura cliente servidor capaz de
transmitir las estructuras de datos puntuales anteriormente generadas a dispo-
sitivos móviles para su visualización mediante śımbolos o markers. La arqui-
tectura requiere un servlet capaz de leer de la base de datos espacial, una API
para la consulta de los datos y un cliente móvil capaz de pedir bajo demanda los
datos para cada nivel de detalle incremental en el área de navegación y generar
la simboloǵıa necesaria para representarlos. Para esto, se ha adaptado un mo-
tor de globo virtual existente, Glob3 Mobile [1], para renderizar los markers de
forma eficiente. Finalmente, se realizó un estudio experimental para determinar
la cantidad adecuada de elementos en pantalla a mantener en el visor para una
mejor comprensión de la visualización. Los resultados, obtenidos para un set de
datos puntuales abierto, extenso y con información de todo el globo y utilizando
un móvil de gama media, sugirieron que la mejor opción es llenar con contenido
aproximadamente el 30% del total de la pantalla y mantener los nodos del árbol
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propuesto limitados a un máximo de 8 markers de punto con texto.
Continuando con la ĺınea de buscar una mejor comprensión de la visuali-

zación, la tercera aportación realizada es un estudio para encontrar la mejor
manera de mostrar en pantalla conjuntos de redes subterráneas de tubeŕıas
de diferentes tipos, representadas como poliĺıneas, en un entorno de globo vir-
tual. Tomando como referencia el estado del arte y el mismo motor de globo
virtual Glob3Mobile, se implementaron técnicas de alpha blending variable, di-
fuminando más la tubeŕıa conforme se aleja de la posición de vista. En total,
ocho funciones matemáticas diferentes fueron analizadas para encontrar el mejor
efecto de difuminado por distancia. Adicionalmente, se implementó una versión
de otro método de referencia, la excavación, para globo virtual, y se diseñó un
nuevo método de visualización, el ditch. El ditch es un mallado semiciĺındrico
generado alrededor de una tubeŕıa. Combinado con una textura adecuada, este
mallado consigue un efecto de acequia en la visualización que puede dar la sen-
sación de profundidad deseada. Tras un experimento de experiencia de usuario,
se determinó que el método que daba mayor sensación de subterraneidad para
el escenario de pruebas era la herramienta excavadora, seguida de cerca por el
alpha blending variable con función softsign. La visualización de tipo ditch crea
sensaciones muy variables, siendo muy fácilmente entendible por usuarios con
experiencia técnica pero muy poco comprensible para los que no la teńıan. Por
último, todas las metodoloǵıas probadas ofrecieron una mejor comprensión que
la técnica de referencia más común: el alpha blending con valor de transparencia
estable.

Una cuarta aportación ha sido una metodoloǵıa para la generación au-
tomática de modelos 3D de cada edificio de una ciudad a partir de nubes de
puntos LiDAR y poĺıgonos de parcela obtenidos de la base de datos libre OSM.
Los modelos generados para cada edificio siguen el estándar CityGML, que con-
templa niveles progresivos de detalle. Se alcanza un nivel LoD2, que ofrece su-
perficies poligonales para cada pared y cada cara del tejado del edificio. Debido
a que cada poĺıgono de OSM puede contener uno o varios edificios diferentes en
su interior, se establece una primera etapa que los identifica y los separa cuando
es necesario. Para cada uno de estos edificios separados, un nuevo poĺıgono
se genera automáticamente utilizando un nuevo algoritmo de generalización de
ĺıneas basado en detección de esquinas. Tras esto, el método determina de entre
cinco categoŕıas, plano, inclinado, a dos aguas, piramidal o complejo, la que
mejor describe el tejado de cada edificio, lo que es necesario para generar un
modelo adecuado. Esto se lleva a cabo mediante extracción de planos y de un
sistema de reglas en función de los planos detectados, las intersecciones entre
éstos y variables estad́ısticas obtenidas a partir de los puntos de entrada. Una
primera evaluación del método aplicada a un conjunto de datos representativo
de una ciudad de tamaño mediano demostró resultados prometedores para la
identificación de las diferentes categoŕıas de edificio. Finalmente, se demostró
que la técnica ofrece una elevada reducción del número de datos a transmitir
para representar el mismo contenido: el modelo final de ciudad en CityGML
ocupó sólo un 8.5% del tamaño original de la nube.

En la quinta aportación, otra metodoloǵıa fue planteada para la clasificación
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de puntos de terreno en nubes LiDAR con vista tanto a trabajos que requieran
segmentación de la nube como a la generación de modelos de elevación de terre-
no. En ella se presenta un nuevo concepto, el patch, que es un clúster de puntos
de altura local mı́nima en la nube. Los patches se generan mediante clustering
jerárquico basado en distancia y un filtro anisotrópico para dar mayor rele-
vancia a la dimensión de altura. De cada patch obtenido, se generan medidas
estad́ısticas basadas en sus puntos y en mapas ráster de caracteŕısticas multi-
escala. Con estas medidas, un árbol de decisión es definido para determinar la
pertenencia o no de cada patch al terreno. Finalmente, y utilizando los puntos
aśı clasificados, un algoritmo es propuesto para generar mallas de triángulos
regulares con niveles de detalle progresivamente menor para su utilización como
modelos de elevación de terreno. El algoritmo propone la resolución de un sis-
tema de ecuaciones para encontrar alturas para los vértices de mallado regular
deseado de forma que se ajusten a los datos de entrada. Para evitar errores
máximos demasiado altos, una etapa posterior reajusta aquellos vértices que
contribuyan más al error global de la malla. Esta metodoloǵıa de clasificación
de puntos de terreno se comparó contra varios algoritmos del estado del arte en
un benchmark urbano de referencia, obteniendo los mejores resultados de entre
todos los métodos que utilizan únicamente una nube de puntos como punto de
partida.

La sexta aportación de esta tesis busca otorgar un significado semántico a
aquellos puntos de las nubes no clasificados como terreno. Partiendo de nubes
LiDAR capturadas desde el suelo, se introduce una metodoloǵıa de trabajo
no supervisada que clasifica estos puntos en otras cuatro categoŕıas: edificio,
vegetación, postes y coches. Para ello, utiliza un esquema de detectores progre-
sivos dedicados a una única clase, donde la entrada de una etapa es la salida
de la anterior. Los detectores utilizan mapas ráster de caracteŕısticas extráıdas
a partir de los puntos presentes en cada celda del ráster para determinar las
áreas donde pueden potencialmente haber postes y coches, y mediante técnicas
de agrupamiento de los puntos determinan cuáles de estas en efecto incluyen
estos datos. Los puntos restantes también son agrupados, y se determina la
pertenencia a edificios o vegetación de cada grupo en función de un algoritmo
recursivo de extracción de planos. La técnica propuesta fue comparada con va-
rios algoritmos similares del estado del arte basados en redes neuronales usando
un benchmark urbano espećıfico de nubes terrestres. Los resultados mostraron
que la detección progresiva de clases con métodos no supervisados fue capaz
de mejorar a todas las técnicas basadas en aprendizaje supervisado salvo una,
demostrando su competitividad para clasificación semántica de nubes de puntos
urbanas.

Continuando en esta ĺınea, una séptima aportación realizada es una pro-
puesta para la clasificación y el modelado 3D de elementos pertenecientes a
corredores eléctricos a partir de nubes de puntos. El algoritmo de preprocesado
comienza con una búsqueda del corredor en la nube, utilizando combinaciones
de mapas ráster de caracteŕısticas a partir de los datos de altitud e intensidad
de los puntos, aśı como de la cantidad de puntos presentes en un área local de
la nube. Esto devolverá una clasificación inicial de torres y cables eléctricos,
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similar a las ya existentes en otros métodos del estado del arte. A partir de
este punto y mediante técnicas de clustering y ajuste de los puntos a ecuaciones
de ĺınea, se refina la clasificación en las áreas donde cable y torre se usen y
se introducen detectores para clasificar subcategoŕıas dentro del corredor: ais-
ladores, que son una subcategoŕıa dentro de la torre; y conductores de cadena
puente, cables gúıa de toma de tierra y cables conductores, que son subcate-
goŕıas dentro del cable. Teniendo en cuenta el estado del arte en el momento de
escribir este caṕıtulo, la expuesta aqúı es la primera propuesta realizada para la
diferenciación de las subcategoŕıas de un corredor eléctrico en nubes de puntos,
al menos hasta donde tenemos conocimiento. Debido a esto, la comparación
contra otros métodos del estado del arte sólo se ha podido realizar al nivel
general, aunque se ofrecen también unos resultados iniciales prometedores para
cada subcategoŕıa realizada.

Dentro de esta ĺınea de trabajo, también se ofrece un método para segmentar
individualmente cada cable y cada torre detectada en el corredor y generar,
a partir de ellos, modelos vectoriales en 3D. El modelo generado para cada
conductor corresponde a los parámetros que definen una curva catenaria en
tres dimensiones: un punto de origen o, otros dos puntos por los que el cable
queda suspendido en el aire y un parámetro de torsión, a. Los parámetros
o y a son obtenidos mediante optimización multivariable PSO a partir de los
puntos de cada conductor en la nube. El margen de error RMSE de cada
modelo aśı obtenido alcanza los requisitos necesarios para su uso en aplicaciones
industriales. A su vez, un modelo vectorial es generado para la torre tras una
identificación automática del número de brazos presentes en la misma. Obtener
estos modelos permite una reducción muy importante del número de puntos
necesarios para poder representar un conductor en cualquier visor: en lugar
de enviar los cientos o incluso miles de puntos de la nube, pueden enviarse 3
puntos y un parámetro numérico que permitirán mostrar en todo momento el
cable con cualquier nivel de detalle. Idéntica solución puede realizarse para el
poste y los brazos de la torre de alta tensión, pues se reduce la torre a una ĺınea
central vertical y a un número de ĺıneas horizontales equivalentes al número
de brazos del cable. Finalmente, los modelos pueden ser aprovechados por śı
mismos para cálculos posteriores de anomaĺıas y llevar a cabo tareas periódicas
de mantenimiento en el área del corredor.

La octava aportación de esta tesis busca poder aprovechar nubes de puntos
afectadas por ruido en todos los procesos propuestos anteriormente. Para ello, se
identifican hasta 7 esquemas diferentes de ruido presente en las nubes de puntos
en función de su apariencia visual y se propone una metodoloǵıa de procesado en
paralelo para filtrar cada una de ellas por separado. Para estabilizar el tiempo
de ejecución, la nube se divide en rodajas y el filtrado se realiza en cada detector
mediante técnicas de clustering y caracteŕısticas basadas en intensidad, posición
y distancia punto - emisor LiDAR. Los resultados parciales de cada detector
se unifican en una única salida de ruido filtrado. Finalmente, se propone un
nuevo benchmark compuesto por 20 nubes de puntos afectadas con ruido, con
el cual se ha validado la propuesta realizada. Los resultados obtenidos han sido
prometedores y muestran su utilidad para el filtrado de la gran mayoŕıa del
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ruido presente en las nubes de puntos.
Y finalmente, la novena y última aportación realizada en esta tesis fue un

visor ligero para nubes de puntos, surgida como necesidad a partir del trabajo
diario en el resto de caṕıtulos. En ella se implementaron controles de navegación
adaptados para nubes de puntos, tres métodos de selección de puntos en escena
3D, siendo uno de ellos, la caja centrada, novedoso, y un esquema de LoD para
una carga fluida y bajo demanda de la nube. Esta estrategia se basa, al igual
que en el caso de los markers, en una rejilla regular en lugar de en un árbol
octree. No obstante, al no ser necesario un servicio de red en este visor, se
escogió un diezmado en función del tamaño de las celdas, la inclinación de vista
y un área de pantalla de referencia como forma para introducir más o menos
detalle en la visualización. La experimentación llevada a cabo demostró mayores
similitudes con una versión sin diezmar cuando el tamaño de celda es escogido
en función de la densidad de puntos de la nube, el área de referencia se define
de gran tamaño y el parámetro de importancia de la inclinación se mantiene en
un rango estable.

En conclusión, como resultado de este trabajo se han obtenido:

� Dos estrategias novedosas para la generación de niveles de detalle aplica-
bles a conjuntos de puntos y a generación de modelos de terreno.

� Dos estrategias novedosas para la generación de modelos 3D vectoriales
reducidos a partir de nubes de puntos, con vistas a aplicaciones de smart
cities e inspección de ĺıneas eléctricas.

� Cuatro metodoloǵıas novedosas diferentes aplicadas a la segmentación en
categoŕıas diversas de grandes volúmenes de datos puntuales en forma de
nube de puntos.

� Una arquitectura de transmisión progresiva de conjuntos de puntos es-
tructurados en nivel de detalle quadtree a aplicaciones móviles de globo
virtual.

� Y finalmente, tres estudios que analizan las mejores maneras de mostrar
información georeferenciada al usuario en forma de markers, ĺıneas de
tubeŕıas subterráneas y nubes de puntos.

Estos resultados han sido expuestos y revisados ante la comunidad cient́ıfica,
dando lugar a tres art́ıculos expuestos en revistas indexadas, un caṕıtulo de
libro y cuatro art́ıculos presentados en conferencias internacionales. El listado
completo de los mismos se ofrece en el Anexo I. Finalmente, se ha conseguido
transferir gran parte de las aportaciones aqúı expuestas a diversas aplicaciones
en los ámbitos tuŕıstico, educativo, investigador e industrial. Estos diferentes
casos prácticos de uso de esta tesis han formado a su vez una parte de los
contenidos de otro art́ıculo en revista indexada, otro caṕıtulo de libro y seis
art́ıculos expuestos en conferencias especializadas. Con estas transferencias se
consiguen completar, al menos desde nuestro punto de vista, todos los objetivos
marcados al inicio de esta tesis doctoral.
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Quiero utilizar estas ĺıneas para expresar mi agradecimiento hacia todas las
personas que, directa o indirectamente, han tenido un papel en que yo pudiera
completar este trabajo de investigación durante estos cuatro años.

El primero y más grande de mis agradecimientos es para mis directores de
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manera de simplificar una poliĺınea, entre otros muchos. También me mostraron
las mejores maneras de estructurar un art́ıculo cient́ıfico y dar a conocer los
resultados que hemos ido consiguiendo. Ha sido mucho lo que he aprendido
trabajando con ellos, y mucha la paciencia que ellos han tenido conmigo. Para
ellos va mi más sincero reconocimiento.

En segundo lugar, quiero acordarme de mis compañeros de laboratorio y
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Chapter 1

Introduction

Our world becomes more digital every day. Wherever you look, you can see
lots of electronic devices capable of providing you with information and capture
data about the environment. Those devices go from televisions and computers
to smartwatches, without forgetting others like mobile phones and tablets. All
of them are equipped with screen, network functionalities and different sensors
which collect, between other data, your position. Additionally, there are huge
amounts of sensors distributed around any place on the Earth. Those sensors
are capable of reading and continuously stream any kind of physical properties,
like temperature, humidity, pressure, radiation or displacement, between others.
Again, all of them are associated with a certain position. These devices generate
enormous and always growing volumes of geo-referenced data that should be
properly managed.

A geo-referenced or spatial datum is considered to be any datum associated
with a certain position on the planet. For this association, a spatial reference
system (SRS) is generally used to express this position in terms of a tuple of
coordinates. The coordinates can be geographic (latitude, longitude, height) or
projected cartographic (x,y,z).

Geo-referenced data can be divided into two categories: vector data and
raster data. Vector data are geometrical variables, points, lines and polygons,
that are associated with a position on the Earth. On its part, in raster data the
pixels of an image or the cells of a regular grid are the ones to be associated with
a location in the world. Aerial and satellite photographs, cartographic maps or
digital elevation models fall into the raster data category.

This work focuses mainly on vector data. These data are commonly gen-
erated using three types of technology: the global positioning systems (GPS),
the remote sensing technology and the geographic information systems (GIS).
GPS are systems that determine instantaneously and accurately the terrestrial
location of a device, via triangulation with respect to several different satellites
whose location is always well-known. This location can be used alone as a sin-
gle point or can be combined with extra information. In remote sensing, the
spatial data are created by sensors that analyze the surrounding environment
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without keeping contact. Those sensors can be active, which means a signal
is sent against the environment, or passive, limiting themselves to gather the
information. The best known remote sensing technologies for vector data are
active: RADAR and GPR to measure distances in aerial and subsurface en-
vironments respectively using radio waves; LiDAR to measure distances using
light beams, and SONAR to measure distances using sound waves, generally
in sub aquatic environments. The outputs of such sensors usually come in the
form of point clouds with very variable volume and density. Finally, the GIS
are information systems that combine hardware and software elements so a user
can create, gather, edit, organize, convert, model, save and query spatial data.
Such information systems go from full open and privative platforms (ESRI Ar-
cGis, QGis, Grass, Autodesk, Capaware) to libraries of functions (proj4, GDAL,
GeoTools, LasTools), without forgetting specific servers for geo-referenced data
(Geoserver, Mapserver).

When large sets of vector data need to be managed, problems arise for their
storage, their transmission through the network and their visualization. This
is specifically true when the data is intended to be displayed or captured in
a portable device. Mobile devices normally have limitations on memory and
computational power. This makes keeping entire data sets of any kind very
difficult. Moreover, they have limited screen sizes. This fact forces a careful
management of the amount of information to show on screen, so no overlapping
or cluttering occurs and the user does not become saturated. Due to all these
reasons, it is advisable to limit the amount of data to transfer to the device at
any moment and do it only under demand of the user.

In this doctoral thesis, new methodologies for the processing of large volumes
of spatial data are introduced. They aim to ease the progressive and selective
streaming by generating level of detail structures out of the data, and to improve
the understanding of such data.

1.1 Thesis goals and organization

In this dissertation, new methods for processing of large geo-referenced data sets
or Big Geo Data are proposed. In those methods, the data input, their efficient
access and storage, their streaming and their proper visualization must be taken
into account. Moreover, they should keep the coherence in the representation
and display of the results: they should not generate singularities or deformations
with respect to the input data.

In order to achieve the desired efficiency in the storage, transmission and
rendering of the data, strategies of level of detail should be introduced, so dif-
ferent and progressively less detailed versions of the same dataset coexist. These
representations should be interchangeable according to the importance or the
perspective from the point of view of the user. Moreover, a streaming architec-
ture that allows to query the data on demand is required. Using a virtual globe
application as an example and a spatial dataset which we desire to show on the
globe, more detail should be downloaded and added in the areas of the globe
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the user visits.
With all these considerations in mind, the main objectives of this research

work have been defined as the following:

1. Studying the classical techniques of level of detail (LoD), progressive
streaming and others of interest such as triangle meshing or point cloud
processing. The objective is to filter the most highlighted findings in the
state of the art on these topics, in order to process geo-referenced data.

2. Proposing, at least, two methodologies for the preprocessing of large spa-
tial data sets, generating structures which optimize their further trans-
mission. These structures should allow the generation of different levels
of abstraction of the data for a progressive visualization from any device.

3. Proposing, at least, a streaming and visualization scheme which adapts to
desktop and mobile applications. This scheme should allow an incremental
streaming of new data from a reduced subset. With each new transmission,
the level of detail of the subset in the viewer must be increased. Regarding
this architecture, details of implementation should be provided as well as
an analysis and validation of the results.

4. Determining objective indicators to demonstrate the efficiency and via-
bility of the proposed algorithms, as well as for comparisons with similar
algorithms from the state of the art.

Apart from the four main objectives, it is also expected as an extra objective
of this research work to transfer part of the generated knowledge. These trans-
ferences will be made to different companies and entities in touristic, geomatic
or other fields that may take advantage of them. The transferences will be done
as prototypes or applications that help the daily activities of the commented
companies and entities. This way, the society benefits from this research work.

According to the contributions that have been made to address these objec-
tives, this document has been divided in eight different chapters. Each one of
them includes a related work section with the state of the art on the covered
topic. After that, a contribution on the topic is detailed. As a guide for the
reader, a summary of each chapter is introduced in the following paragraphs:

Chapter 2: This chapter is focused on the point, the most common type of
vector data, of which there are more and larger data sets. The issues regarding
displaying very few or too much points on screen is introduced, specifically for
the case in which they will be shown symbolized as a name or an image (a
marker). To address those issues, a preprocessing algorithm is proposed for an
efficient transmission and a proper visualization of punctual data as markers.
In order to support data sets of global scale, a level of detail structure based on
a quadtree is proposed instead of the common binary and octree solutions. For
the generation of the coarser levels of detail, two different strategies are followed:
sorting and clustering. Finally, a client-server architecture for transmission of
data to virtual globe mobile applications is developed.
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Chapter 3: This chapter explores the lines, a type of vector data frequent
in geography, networks and smart city applications. The best manner to present
geo-referenced data sets related to underground water, gas and power networks
is studied so the user correctly understands they are placed below the surface.
To do so, existing techniques such as α-blending and excavation tools are con-
sidered. Additionally, a new one, the ditch, was designed. This novel method
adds a semi-cylindrical mesh around the pipeline before its display on screen.
The suitability of each explored method is analyzed with user experience surveys
with people with and without technical knowledge.

Chapter 4: In this chapter, polygons are explored. Polygons are the third
type of vector data and are found in 3D models or cadastre footprints, among
others. The LiDAR technology is also used for the first time in the research.
LiDAR enables generating potentially enormous point clouds which represent
the real world in a detailed manner. Using both of them, a method capable of
creating 3D city models is proposed, using a point cloud representation of the
city as the inputs. Models are generated using the CityGML standard, which
integrates support for level of detail. The chosen level of detail for the models
was LoD2, which supports polygonal surfaces to represent the rooftop of the
building. The designed preprocessing pipeline categorizes the type of rooftop
between 5 possible classes and generates the corresponding rooftop model. This
reduces heavily the volume of data to display without losing the key details of
each building, which opens the possibility of its use in simulations and smart
city, virtual reality and augmented reality applications.

Chapter 5: The point clouds, which have been used in the previous chapter
for the generation of 3D models, are large geo-referenced data sets and have
a great number of practical applications by themselves. These applications
normally require a previous segmentation of the points. In this chapter, a new
ground classification method for aerial LiDAR point clouds is proposed. It relies
on the generation of patches, groups of points of minimum local height. From
each patch, different feature descriptors are extracted and passed as input for
a decision tree classifier, which determines whether the patch represents terrain
or not. The suitability of this algorithm is analyzed by comparing its behaviour
with the results of previous methodologies on a benchmark. Finally, a use case
of the generated results for the creation of multi-resolution triangular regular
meshes is presented. Such meshes have utility as digital elevation models with
progressively coarser levels of detail.

Chapter 6: Points that are not related with terrain represent other objects
of the real world, as buildings, vegetation, cars or poles. Moreover, the point
cloud can be acquired from a vehicle instead of a flight. In this chapter, the
patch decision tree algorithm is adapted for vehicle-borne clouds, and then a
progressive, non-supervised segmentation algorithm is proposed for classifying
the remaining points into the classes car, pole, building and vegetation. The
validation of this methodology is conducted on a benchmark that contains urban
vehicle-borne point clouds. Comparisons with other proposals are also described
in the chapter.

Chapter 7: This chapter continues the line of point cloud segmentation. A
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pipeline for the classification of different components of a power line corridor in
LiDAR point clouds is proposed on it. The novelty with respect to prior methods
lies in their ability to identify smaller pieces as insulator strains, bridge chains
and shield wires instead of classifying only wires and pylons. The behavior of
the new pipeline is analyzed with tests conducted on a benchmark for which
prior results of a reference method are available. Additionally, a new bench-
mark is proposed. Once the corridor elements are categorized, an algorithm for
the generation of 3D vector models from each detected wire and pylon is also
introduced. The objective is to make more efficient the network transmission
of the corridor information and to ease the practical use of such data in power
line inspection and forest fire prevention tasks.

Chapter 8: All the previously introduced methods for classification in point
clouds assume a clean input that represents accurately the real world. However,
the acquisition process often fails and the point clouds include noise. This
noise must be filtered prior to using the point cloud. In this chapter, different
types of noise that can be found in LiDAR point clouds are identified, and
a methodology for their removal are proposed. Each type of noise is there
filtered using a specific detector. Different detectors can be used in parallel
when more than a type of noise is present in the point cloud. In this case, the
final output is a combination of all the different filtering results. Finally, a new
open benchmark of noise-affected point clouds is created, published and used to
validate the proposed methodology.

Chapter 9: As a final contribution, in this chapter a lightweight viewer of
point clouds is introduced. It was designed to address some needs of the daily
research work. In the proposed viewer, camera controls have been implemented
for the navigation towards the cloud. A LoD strategy for visualization based
on a regular grid has been added. Levels of detail are generated per grid cell
by applying a decimation factor which varies according to the screen area and
the pitch angle. Finally, three selection modes have been integrated in the
viewer for point edition purposes. Two of them, rectangle and box, are very
common in other point cloud dedicated software. The third one, centered box, is
a modified version of box which aims to better fit the selection to the object the
user expects to be selected. The conducted experimentation looks for finding
the best manner to adjust the grid cell size and the factors of reference screen
area and pitch importance on the chosen level of detail strategy.

To close this document, a final chapter resumes the contributions and con-
clusions achieved during this research work and the future lines of work that
have been opened from them. Moreover, the different use cases and commercial
applications in which the different proposals of this work have been transferred
are enumerated in the final chapter.
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Chapter 2

Structuring, transmitting
and efficiently displaying
point datasets

Points are the most frequent type of vector data. They are normally expressed
as a tuple of 2 or 3 dimensions expressing the spatial coordinates and, option-
ally, associated information of all kinds. They can symbolize geographical data,
like cities, towns, mountains or rivers. It can also represent points of interest
or current placements for people, animals and objects. They can even be data
relative to measurements or active and passive sensors of all types, among mul-
tiple other uses. Individually, a single point does not normally say too much,
but a set of multiple points can be a really powerful tool to understand and
communicate the reality.

Figure 2.1: Glob3 Mobile web visualization of a dataset representing cities in the
world. Displaying the raw dataset produces the undesirable cluttering effect.
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In order to generate useful information from point data, the data should
be processed, analyzed and displayed in their proper context. Without such
an analysis, data has little value. Let it be an example of a point data set
containing the populated places of the world, whose obvious potential use is
for knowing their placements, names and sizes. But, as no analysis has been
previously done, the raw data set is displayed as is on a map. Each point is
represented as a red dot in the map, so you know where the cities are. The
result of doing so can be seen in Figure 2.1.

As it can be seen, the whole of Europe is a red stain. You do not really know
whether it is a single and continental-sized city or multiple cities. In case there
are multiple cities, you do not know the amount of them. There is no context,
no information. This phenomenon is called cluttering and must be avoided.
Another factor is that, for such a representation of nothing, all the content of
the point data set has been transferred to the viewer of your choice and then
drawn in its screen, generating unnecessary costs in memory, processing and
network usage. In order for this data to be useful, it should be shown resumed
and aggregated at first, and then add detail on demand as the user explores the
scene.

This chapter explores how to avoid cluttering and efficiently transmit and
display a point marker data set with spatial information and two properties for
name and size, creating a server-client architecture for the progressive trans-
mission and visualization of the markers in mobile environments. In this work,
already introduced in [2], level of detail strategies and cluttering reduction tech-
niques such as sorting and clustering have been applied to generate a structured
database out of the input data set. A client implementation of a level of detail
scheme has also been developed to retrieve the proper information according
to the point of view of the user. The client also includes an efficient rendering
pipeline that has been developed in order to render these features as billboard
markers.

2.1 Related work

This chapter focused in two different but related concepts regarding spatial data:
cluttering reduction and progressive transmission. Both have been profoundly
researched by several authors throughout the last decades.

Cluttering is an old problem common to most of the visualizations of multi-
dimensional data in two dimensions, not only in mapping but also in plots,
graphs and networks. This includes multi-variable data visualization, for which
Peng, Ward, and Rundensteiner [3] analyses clutter in parallel-coordinate graphs,
star glyphs, scatterplots and dimensional stacks; or spatial-temporal data, for
which Shrestha, Zhu, and Zhu [4] proposed a new plot technique based on posi-
tion lines and temporal points. In this topic, the work of Ellis and Dix [5] should
be highlighted. They presented the problem of cluttering in a general manner,
established a taxonomy to classify the different techniques to tackle this issue
in base of aspects which they are focused on, and made selecting an appropri-
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ate methodology easier to the reader according to their data and visualization
target.

For the case of georeferenced data and mapping visualization, the proposed
solutions to the cluttering problem generally rely on sorting and clustering tech-
niques. Sorting solutions define a criteria to order the data from more to less
important. This is seen in the work of Pombinho, Carmo, and Afonso [6],
which defines a interest function by combining elements of the degree of interest
function of Furnas [7] and the work of Keim and Kriegel [8]. Special cases of
very concentrated points of similar importance are solved in [6] via grid-based
aggregation functions. Regarding clustering, several methods have been intro-
duced by Mahe and Broadfoot [9] for cluttering reduction in Google Maps API.
Grid and distance based clustering have been reviewed in their work. Other
proposals on clustering have been done by Delort [10], which proposed the use
of hierarchical distance-based clustering; Lu, Chen, and Cheng [11], that com-
bined distance-based clustering with the Geotree data structure to aggregate
overlapped data, or Krızek [12], which used clustering with lines and points to
better show the risk potential of a certain vessel path. Finally, other studies
offer a comparative survey between different methods which aim to reduce clut-
tering in maps. Two examples are the work of Allison, Treves, and Redhead
[13], which compares between a series of cluttering reduction methods based on
ten different evaluation criteria; and the work of Korpi and Ahonen-Rainio [14],
which presented a survey which focuses on how accurate is the interpretation
that users make from data visualization, comparing cluster-grouped data and a
heatmap.

On its part, progressive vector data transmission [15] is the common ap-
proach to send large volumes of spatial data to viewers in mobile and web
environments throughout the Internet. It looks for initially sending the most
relevant information and then adding detail on-demand without redundancy, so
the volume of transmitted data is kept as low as possible. Progressive trans-
mission techniques have been implemented for meshes (Rusinkiewicz and Levoy
[16], Cheng [17], and Kim, Lee, and Kobbelt [18]) and raster data (Dekel and
Goldberg [19]), as well as for punctual information. Although for point sets al-
ternatives as neighbourhood operators [20] have been explored, the two common
approaches are the conversion from points to TIN meshes for exploiting mesh
transmission techniques [21] and the use of level of detail (LoD) data structures
[22]. Inside LoD structures, binary trees (Gobbetti and Marton [23]) and, above
all, octrees (Schnabel and Klein [24], Huang et al. [25], Kammerl et al. [26], and
Smith, Petrova, and Schaefer [27]) are the most utilized ones for progressive
transmission of point datasets.

Octrees are appreciated for local 3D point data sets, e.g. point clouds,
because every new and more detailed level on them are generated in base to
a single division on each of the three spatial coordinate axes, resulting in even
node loads. However, when the point data sets have information at planetary
scales, the height dimension loses relevance with respect to the latitude and
longitude and many empty or poorly loaded nodes will be generated. This issue
can be solved by using specific data structures for global geo-referenced data,
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which are normally called Geodesic Discrete Global Grid Systems (G-DGGS)
[28, 29] in the literature. The most known and used of the G-DGGS structures
are the quadtree, due to its congruent, quadrangular 1-4 refinement, according
to Mahdavi-Amiri, Alderson, and Samavati [30]. In this chapter, a variant of
the classical quadtree is proposed for the transmission of punctual data.

Finally, the use of already existing software for spatial data transmission
has also been considered. The best example is Geoserver [31], an open source,
server-side software which allows its users to publish online geospatial datasets.
Geoserver implements the open standards Web Feature Service (WFS), Web
Map Service (WMS) and Web Coverage Service (WCS) from the Open Geospa-
tial Consortium. Its wide compatibility with many kinds of data formats and
its easy-to-use web interface have made it a reference on the GIS market.

However, critical disadvantages on its use for large data sets have been found.
Requesting sorted feature data for large data sets and bounding sectors is ex-
cessively time-consuming, affecting the visualization experience. In addition,
Geoserver does not use progressive vector data transmission. Data sent in coarse
levels of detail are resent on finer levels, generating redundancy. The extensions
for point clustering seem also limited. For instance, the PointStacker extension
generates clusters of markers but they can only be displayed as a raster WMS
layer. This hinders the implementation of custom actions on markers for user
interaction. For these reasons, Geoserver has been discarded.

2.2 System overview

A custom client-server architecture is proposed instead for the transmission and
visualization of large punctual datasets. It consists of a mobile app that allows
the user to navigate a multiresolution earth model, displaying on real time the
markers inside the visible area. The mobile client performs multiple network
petitions to fetch marker data, depending on the camera point of view. The
server maintains a database containing a representation of the entire dataset, in
order to respond to the requests efficiently. Figure 2.2 shows the overall system
architecture.

Preprocessing 

Machine

Subsets Gen.

Leaf Nodes Gen.

Inner Nodes Gen.

LoD & Visibility

Mobile ClientServer

Apache Service

JSON

MapDB 

Database

Visible Nodes

Markers Render

HTTP/GET

JSON Node

Figure 2.2: General client/server architecture of the proposed system.
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The database is generated by running a preprocessing pipeline specifically
developed for this purpose. The pipeline takes the point data set and creates a
quadtree-like structure for the progressive streaming of the data. Nodes in the
quadtree can be downloaded on-demand from a servlet for their visualization.

The mobile app is developed using the Glob3 Mobile framework [1, 32, 33,
34]. This open source engine allows the creation of realistic 3D virtual globe
natively in web and mobile devices, assuring an efficient use of their graphic
capabilities. The web version runs on Javascript and uses WebGL, so it is
executable on standard HTML5 browsers. For iOS devices there is a C++ /
Objective-C version, and a Java version is available for Android environments,
both using OpenGL ES 2.0 as the graphic library. These native versions offer a
higher performance on mobile devices than web versions running inside mobile
web engines.

The Glob3 Mobile engine enables connecting to different data sources in
order to obtain geographic information about a specific bounding sector of the
map, including:

� Raster map servers, to obtain satellite photos or any other synthetic
imagery.

� Vector data servers, which provide different geometries for georefer-
enced features.

� Elevation servers, which offer the cartographic data necessary to gen-
erate realistic 3D terrain.

This way, all the needed information is downloaded on real time while the
user navigates through the 3D scenario, asking for more detailed data in those
regions where the viewer approaches.

The vanilla version of the engine offers two different modes for displaying
the engine: (i) requesting the whole dataset in a single petition from a network
server, and (ii) fetching the data from an offline disk resource. However, none of
these solutions is valid for large datasets, due to the scarcity of available memory
in most mobile devices. Besides, the raw dataset lacks of any LoD strategy,
which makes unfeasible its real-time rendering. Therefore, for the context of
this proposal new functionalities have been added to the Glob3 Mobile engine,
implementing a LoD strategy to render a high number of markers using online
sources. This novel service makes all the needed requests automatically based
on a point-of-view LoD scheme.

The following subsections exposes in detail the aspects of the preprocessing
pipeline, the streaming service and the mobile viewer application.

2.3 Generation of a LoD based database

Storing data on the client side is not an option when large sets of point markers
should be displayed in a mobile device. There are imitations regarding process-
ing speed and memory which makes that option unfeasible. That generates the
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need of a server/client architecture, which on its part requires preprocessing of
the data for an appropiate transmission.

In the proposed architecture, a pipeline is developed for the generation of
different levels of detail from the input data. Their content depends on two
possible strategies:

� Sorting: every node in any level of detail contains only the N most rele-
vant features.

� Clustering: some nodes also could contain clusters that represent several
individual features.

The process implemented for such purposes has been split into three stages,
performed by standalone Java tools, and its final product is subsequently streamed
by the server using a progressive approach.

The threefold preprocessing is depicted in detail in the next subsections.

2.3.1 Splitting data in bounded subsets

The main goal of this stage is to transform a large, unordered input dataset into
subsets. These subsets will correspond with a certain area of the globe and have
a limitation on the number of features, making the problem easier to solve.

Initially, the dataset is sequentially read from disk, including every single
feature inside it in a buffer which can hold a predetermined number of features.
When the buffer becomes full, all its features are inserted into the nodes of a
quadtree-like structure. If the number of features contained in a node becomes
higher than a prefixed maximum size, that node is cleared and children nodes
are created for the node. Then, the features of the former node are distributed
among its children.

Stage 1 Stage 2 Stage 3

Empty

Subset

Leaf node

(features)

Inner node

(features / clusters)

Figure 2.3: Preprocessing stages in the creation of levels of detail.

As splitting criteria for the nodes to be divided, we used the geographical
sector related to the node in the following way:

� The root node covers a sector which contains the whole Earth.
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� If the ratio between delta latitude and delta longitude is lower than 0.75
or bigger than 1.25, the node is splitted into two nodes of equal area.

� Otherwise, four children are created, splitting by the mid-latitude and the
mid-longitude. Thus, each one covers a quarter of the area of its parent.

All changes in the quadtree as a result of an insertion are committed into
a database before continuing with the next chunk of data. The process is re-
peated until all features are read. The result of this stage is a database contain-
ing a quadtree which holds the referred subsets. Visual representations of the
database and the subsets can be seen in Figures 2.3 and 2.4.

In this stage, the values for feature buffer size and maximum features per
subset parameters should be established in a way that helps avoid the overload
due to I/O operations and thus accelerate the process. Experimentation intro-
duced in Section 2.6.1 has been conducted to find the best settings for both
parameters.

Figure 2.4: Subsets generated at stage 1 for the GeoNames dataset. Subset
sector is painted on brown, minimum sector on green.

2.3.2 Creating leaf nodes

In the second stage, the features stored in the previously generated subsets
are redistributed among deeper nodes with a lower capacity. This capacity
is preassigned experimentally in order to avoid marker cluttering issues. The
experimentation and the final settings can be found in Section 2.6.2.

For every subset from the first stage, a recursive algorithm is applied in
which we take the features list of the subset node and, in case sorting is been
used as strategy, the list is sorted based on the preferred criteria. For each node
the number of features is compared with the established maximum. In case
of a higher number, the node is split into its children, using the same method
that in the first stage, distributing its features. This algorithm is then called
recursively for each child node.
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Otherwise, a filter based on Haversine distance between features is applied:
If the ratio between that distance and the distance between the corner locations
of the node bounding box is lower than a threshold, the node is split again.
The reasons to use a distance filter and how to adjust the referred threshold are
presented in Section 2.6.3.

The resulting tree stores all the features in its leaf nodes, ensuring a maxi-
mum number of features per node and a minimum distance between them.

2.3.3 Filling inner nodes in the quadtree

The third stage is devoted to fill the empty inner nodes of the quadtree using
a bottom-up strategy. The tree is traversed from the deepest level to the root,
looking for inner nodes. For each node found, the minimum bounding sector
containing all the features in its subtree is computed. Subsequently, the LoD
schemes are applied in base of the strategy of choice:

(a) Unfiltered clustering strategy (b) Filtered clustering strategy

Figure 2.5: Differences in cluster visualization between an unfiltered and a fil-
tered strategy for the islands of Lanzarote (up) and Fuerteventura (down).

� Sorting: In case a sorting strategy was selected, the N most important
features are extracted and saved in the inner node, with a maximum value
of N determined by the Equation 2.1:

Nmax = F
1

max(C, 2)
(2.1)
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where F is the total number of features stored in its children and C is the
number of children. Note that the most prominent features according to
the preferred criteria are selected disregarding their spacial proximity.

� Clustering: If a clustering strategy was chosen instead, the minimum
sector for the inner node is split into four quadrants. For each quadrant
containing more than one feature, a cluster is created, whose center is the
average position of the elements. Finally, the cluster set is then checked
using the distance-based filter described in the second stage. Clusters that
are closer than allowed are joined into a single cluster to generate a clearer
display. This can be shown in Figure 2.5.

The resulting feature tree is stored in the final database.

2.4 Server-client communication

The established structure consists in a REST servlet that accepts GET requests
with one or two parameters from a client. Our servlet can contain several feature
databases, each one called a layer.

Therefore, the first mandatory parameter in any request is the selected layer.
The second one, which is called features, is optional and indicates that the client
is only querying for features related to a given node. The request format for a
given node and a list of desired properties is shown below these lines:

http://<serverpath>/<layername>/features?node=<key>&properties=

<property_name>|<property_name>

The result of a request consists in a JSON array containing its features
and/or clusters. In case the requested properties exist, they will be also included
in the response.

2.5 GIS client implementation

The proposed system is meant to serve a map client application which eventually
renders the stored features as geolocated markers for the end-user. In this work,
such GIS compatible client has been implemented using Glob3 Mobile as virtual
earth framework. The following subsections describe in detail the operation of
such system.

2.5.1 Real time LoD during navigation

The rendering process has been implemented as a new subsystem within the
Glob3 Mobile engine. The process starts by querying the server for the root
node of the quadtree. For each created node, a recursive algorithm will check
its visibility and screen-projected area.

Given a certain node, if the node is visible on the screen and its projected
area fulfills predetermined conditions, the system queries the server for all its
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features or clusters and draw markers for all of them. If the layer contains
clustered levels of detail, the system also erases any cluster marker belonging to
an ancestor of the visible node.

The LoD criteria determines that a node must be replaced when at least one
of the following conditions is met:

� abs(Ulat − Llat) > 80° or abs(Ulon − Llon) > 80° where (Ulat, Ulon) and
(Llat, Llon) refer to the upper and lower geographical coordinates covered
by the node bounding box.

� The projected area of the node is greater than a fixed proportion of the
screen area, measured in pixels. Experiments on how to adjust the screen
area percentage were conducted and will be explained in Section 2.6.2.

Applying this process from the root node downwards, a list of visible nodes
is obtained whose markers are rendered.

2.5.2 Generating marker icons

Another Glob3 Mobile subsystem is responsible for the generation of the marker
icons, called ImageBuilder. To do so, it relies on the Canvas API provided by
each platform.

ImageBuilder is a hierarchy of classes that implements an interface for pro-
viding images asynchronously. Such hierarchy can be seen in Figure 2.6.

Figure 2.6: ImageBuilder hierarchy UML diagram.

Some markers may also rely on dynamic builders which update their output
image when needed.

These ImageBuilders can be categorized based on their output. Basic form
builders generate different geometrical shapes. Layout builders take the different
outputs of other builders and combine them on a single image. File builders are
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used for reading images from disk or from online sources. Finally, Text builders
render text according to given font parameters.

Among them, the text builders are specially useful for markers, considering
most of them include some text. An automatic tool also splits the text in
multiline layouts, avoiding very elongated markers.

2.5.3 Shader management

Rendering a scene with many detailed and diverse spatial elements, like point
markers, map imagery, terrain meshes or 3D models, requires sending enormous
amounts of information. This information includes vertices, textures, indices,
colors and illumination conditions, all of which contribute to the final rendered
image. Moreover, if the scene contains a great number of these assets, careful
management of the graphics information is absolutely necessary in order to avoid
redundancies.

Both OpenGL ES and WebGL enable establishing explicitly the inputs and
processes occurring on the Vertex and Fragment stages [35] of their pipelines,
by creating programs in the GLSL language. However, most developers know
very little about graphic programming. To ease the rendering process of point
markers (and any other spatial element), a software design has been made for
the Glob3 Mobile framework so the selection of a proper shader program for
any given spatial element has been done without user intervention [1]. The
management of its associated transactions and data storage is also performed
in an automated manner.

Figure 2.7: A directed acyclic graph to efficiently generate inputs for graphics
pipeline from symbology. Nodes could be accessed via multiple paths. Parent
nodes contain pipeline information common to many renderable nodes.

The first step is to create a proper representation of the symbology data.
To do so, all the necessary rendering data are introduced in a Directed Acyclic
Graph (DAG), like the one in Figure 2.7. Using this structure, the rendering
settings and pipeline information presented as uniforms and attributes, which
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are common to multiple renderable objects, are contained in the parent nodes of
the DAG. This way, data redundancy is reduced. During the creation of a given
frame, the DAG is traversed in depth, and all available information across the
path to a leaf node is gathered. After that, the resulting data set is processed,
generating all the necessary inputs for the graphics pipeline.

According to these inputs, a GPU program is selected from a shader library
integrated in the framework. The system selects the shader that best matches
the available rendering data for each DAG path according to the number of
inputs. Finally, the re-sending of redundant information during the graphics
data transfer is prevented by performing a value checking. Depending on the
type and repetition of the symbology, this technique could save up to 80% of
the transfers [35] and speedup the process, reusing the data and the program
lookup in consecutive frames.

2.5.4 Billboarding

An efficient shader has been developed to render markers. The vertex shader
takes the cartesian location of the mark from a single uniform and converts it
to screen space coordinates with the ModelView matrix transformation, as can
be seen in Figure 2.8. The marker corners are then generated through a view
independent 2D translation, based on the texture coordinates.

Figure 2.8: Vertex shader applied to the marker billboards. Screen position of
the corners is computed by the GLSL code.

The fragment shader performs a texture fetching operation using prefixed
texture coordinates. This texture might be common to a large number of mark-
ers, therefore, the system sort the markers according to the texture they use.
This way, a minimum number of OpenGL state changes is required.

The billboard generated using this technique has a single value of depth
for all its area. For markers that are close to the ground or any other 3D
model, using depth test normally would derive on Z-Fighting artifacts or partial
coverage of the markers. The depth test should be disabled and the rendering
of markers performed after the rendering of the 3D scene.

However, in some use cases it is important to determine whether the terrain
occludes the markers. The calculation of the final visibility compares the depth
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of the center of the mark with the actual depth of the frame, which on mobile
platforms implies using depth rendering or ray shape intersection techniques.

2.6 Tests and practical results

In this section, several experiments are described to determine the optimum
visualization parameters. To conduct these tests, the following machines were
used:

� Processing machine: CPU: Intel i5 dual-core, 2.6Mhz, RAM: 8 GB LPDDR3,
1 TB HDD, OS: Mac OS.

� Mobile device: Motorola MotoG3, OS: Android 5.1.1. Map screen area:
720x720 pixels.

The chosen input dataset was allCountries, a dataset from Geonames.org
which is freely available under a Creative Commons license. This database
contains 10510732 records concerning places around the world, and both the
dataset and its detailed format can be found at [36]. Apart from the position,
each feature on this subset contains a related population, which is the selected
parameter for the sorting strategy, and a name label, which is used in order to
generate the point marker.

2.6.1 Subset size

Figure 2.9: Execution times of preprocessing stages using different buffer sizes.

A first experiment was designed to find the proper subset sizes for the first
stage which allows us to minimize overloads due to I/O operations and accelerate
the process. The execution time for preprocessing has been measured using
different buffer sizes between 32 and 65, 536 features. In order to perform mono-
objective optimization for the subset size parameter, the other parameters have
been fixed as clustering strategy and a node size of 32 in all the experiments for
the second and third stages.
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It should be noted that I/O operations could be found in all stages of pre-
processing. Execution times are measured for all the process and not only for
the Stage 1. The results are shown in Figure 2.9.

A value of 32k for the subset size has proven to be effective in order to
accelerate the execution in all stages of the process. Therefore, it is selected
as the final value for the given hardware configuration. Lower values increment
the number of I/O operations for the three stages.

2.6.2 Node settings

There are two parameters in the final tree nodes that have a key influence on the
number of features which will be shown on the screen during a map navigation.
These are the maximum number of features per node and the split criteria
applied to every node.

In order to adjust them, experiments have been designed in which trees have
been generated where the maximum number of features per node varies between
4 and 20. At the same time, the projected area of each node was adjusted to fit
from a 5% up to 50% of the screen area.

Starting position Final Position Pitch
latitude: 5.35825 º latitude: 41.730985º

longitude: -101.792515º longitude: -87.668136Flight 1
height: 5764420 m. height: 16029 m.

-45º

latitude: 48.06959º lat: 40.433391º
longitude: 7.204285º lon: -3.618721ºFlight 2
height: 9442414 m. hgt: 32166 m.

-90º

Table 2.1: Settings of the Glob3 Mobile flight tests.

Figure 2.10: Features in screen obtained for Flight 1 after varying node capaci-
ties.

Two flight simulations have been made using all possible combinations of the
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referred values. Both had a duration of 60 seconds, and their camera pitch and
starting/ending positions can be seen in Table 2.1. The first flight set the view
direction slightly towards the horizon line, in order to obtain 3D perspective
views of the terrain. The second flight is similar to a 2D zooming, with the
camera view direction always perpendicular to the terrain.

Figure 2.11: Average of min. distance between markers for Flight 1 after varying
node capacities.

Figure 2.12: Features in screen obtained for Flight 2 after varying node capaci-
ties.

For each frame during the test flights, we saved data regarding the number
of markers on screen and the average of the minimum distance in pixels between
them. The results can be seen in Figures 2.10, 2.11, 2.12 and 2.13.

Our testing device has a screen area of 518, 400 pixels. In this dataset, the
associated image for every marker is an elongated text label, that has an average
area of 4,065 pixels. Thus, it would be possible to draw 127 non-occluding
markers on this screen. However, a map full of markers is really hard to read.
Several tests on user experience showed that the map usage is more comfortable
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Figure 2.13: Average of min. distance between markers for Flight 2 after varying
node capacities.

when around a 20% of the screen area is covered by markers, i. e., 25 markers
using our mobile device.

(a) Proj. size: 10%, capacity: 12 (b) Proj. size: 30%, capacity: 8

Figure 2.14: Screenshots taken during the comparative for Flight 1 and varying
parameters.

As the experiment shows, a LoD criteria that limits the projected size to 30%
of the screen, combined with nodes with a maximum capacity of 8 features, offer
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an average number of markers close to the recommended while maximizing the
average of minimum distance between them. In Figure 2.14 it is shown how the
information displayed for a certain area varies with different combinations of
the parameters.

2.6.3 Distance-based filter

Limiting the number of visible markers does not mean that they are well dis-
tributed along the screen. Cluttering issues can be found when all features are
concentrated in a certain area of its node. In order to avoid such issues, a
distance-based filter were introduced in the pipeline.

Figure 2.15: Comparison of minimum distances using different filtering param-
eters.

This filter has been adjusted by conducting tests over the same flight simu-
lations indicated in Table 2.1. The previously selected parameter configurations
are combined with the distance-based filter, varying its ratio from 2% up to
15%. The comparative results of these simulations can be appreciated in Figure
2.15.

The results have shown that the use of a filter improves the distribution of
features on screen during the second flight for all tested parameter values, as
seen in Figure 2.16. However, for the first flight the distribution of features was
only enhanced with a ratio of 5%. Therefore, that value was chosen to be used
in the filter due to its improvements in both flights.

2.7 Conclusions

The chapter explores the possibilities of the generation of levels of detail for
extensive datasets of geolocated features, their performance on mobile devices,
and their integration in a virtual globe. The creation of such levels is based on
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(a) Unfiltered (b) Filtered

Figure 2.16: Differences between non filtered and filtered simulations. A 5%
filter solves a cluttering issue between two of the markers in the area.

the well-known strategies of clustering and sorting, being the latter designed for
progressive streaming.

A novel algorithm has been proposed in which the problem is split into three
stages, producing a final tree structure. The features contained in this structure
are associated to nodes that define the behavior of the view-based LoD algorithm
present on the client. The implemented system allows mobile devices, such as
smartphones and tablets, to request on run-time different degrees of detail of
the dataset, providing a pleasant user experience.

The conducted tests demonstrated that the proposed algorithm is suitable
for the fine-tuning of its defining parameters. Moreover, it is shown how these
parameters impact on the overall preprocessing performance and the final visu-
alization experience.



Chapter 3

Visualization of spatial
underground data in
multimodal applications

In the previous chapter, the importance of pre-processing the geo-referenced
data and having an adequate streaming scheme which maintains the key in-
formation without cluttering the scene has been exposed. However, displaying
data should not be done just for the sake of displaying. Data only becomes
information when it is processed in an understandable way which allows the
final user not only to interact but to make better decisions based on it. And
this fact has a strong impact on important day-to-day tasks, e.g. managing the
different infrastructures of a city, in particular utility networks for distribution
of fresh or waste water, oil, gas or electricity, communication networks or even
manholes.

Precise information and knowledge about these infrastructures is required
for efficient urban planning and management [37, 38]. Traditionally, it has been
managed using paper-based documents and maps. However, with the spread
of information and communication technologies, digitization and visualization
techniques are used in some cities [39, 40]. Appropriate visualization is of cru-
cial use for utility networks planning, management and maintenance, essentially
supporting the entire life cycle of the infrastructure components. These infras-
tructures can be graphically represented using different features, as line features
to represent networks segments, points features to illustrate connections, sub-
stations or valves with spatial and non-spatial attributes. Visualizing these
different types of features is a challenging process. Most recent research on
spatial visualizations has focused on the above surface context, and traditional
GIS were typically developed as 2D desktop GIS applications, which ignored
the representation of underground features.

In the last two decades, a shift from traditional 2D desktop GIS to 3D and 4D
desktop and mobile GIS applications has emerged where 3D/4D visualization

49
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is used because it allows for a more effective representation of utility network
features [41, 42]. Different approaches ranging from more traditional vertical
profile visualizations to immersive visualization such as Augmented Reality (AR)
and Virtual Reality (VR) have been developed. However, these applications did
not find widespread usage until recently; mainly due to the lack of accessible
and limited hardware options as well as suitable Software Development Kits
(SDK) [43]. In 2017, the development and introduction of more performant
consumer mobile hardware and native software support from both Google, with
its ARCore SDK1, and Apple, with its own ARKit SDK2, allowed the creation
of performant applications and optimal support of cameras and sensors already
built-in in the mobile hardware [44].

The research and the development of such applications is still mainly focused
on hardware and software implementation aspects and less on the visualization
aspects [45, 46, 47, 48]. In this chapter, the main contribution is a research
on optimal visualization methods for underground data, which has been done
thanks to a partnership between the University of Las Palmas de Gran Ca-
naria and the European Institute for Energy Research (EIFER) and has been
already introduced in [49]. Three distinct strategies have been tested: the first
is based on the use of transparencies to convey a sense of depth, the second relies
on the generation of ditch meshes around the utility object and the third is a
world-space deformation of the elevation model that exposes the underground
elements. These strategies have been implemented in an immersive multimodal
application, called MultiVis, for handheld iOS and Android devices. Further-
more, a comparative user experience analysis of different techniques aimed to the
visualization of utility networks and other underground facilities are performed
and evaluated. It includes a set of user evaluations for different parameters of
these techniques, which gives us an insight on how the proposed methods affect
the experience and usability for technical and non-technical users.

3.1 Related work

In the last twenty years, several studies have proposed solutions to accurately
visualize subsurface data in VR or AR applications. A first AR prototype is
introduced by Roberts et al. [50]. It relies on GPS sensors and visual tracking to
overlay an underground utility network over a real scene. Then, the scene along
with the overlay is shown in a Head-Mounted Display (HMD) device. Bane and
Hollerer [51] proposed a Tunnel Tool visualization: data related to hidden and
occluded parts of the scene are rendered inside a frustum, generating a tunnel
effect in the final image. Avery, Sandor, and Thomas [52] applied an edge
overlay effect, in which the outlines of visually distinct features on occluding
surfaces are preserved to provide depth cues to achieve an X-Ray vision effect.

Around 2009, two different lines of research on how to visually represent
underground data surged. The first one looks for estimating and showing the

1https://developers.google.com/ar/
2https://developer.apple.com/arkit/
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positioning error of an underground network model. Such a technique is desir-
able for field technicians in order to avoid damaging hidden subsurface elements
during maintenance tasks. On this topic, Su et al. [53] investigated the use of an
uncertainty region around the pipe geometry. That region is visualized in the
scene as a semi-opaque polygon. Li, Cai, and Kamat [54] empirically derived
a proper size for that uncertainty region by comparing utility network plans
with Real-time kinematic global positioning systems (RTK-GPS) and GPR sen-
sor measurements made in the working place. Zhang et al. [55] compared the
precision and perceived depth appearance obtained after placing the subsurface
data in an AR app with computer vision matching techniques and sensor-based
techniques. Finally, Scholtenhuis et al. [56] showed a fuzzy 3D-model of the
utilities in an AR application for smart glasses and tablets. Models containing
cylindrical halos were used to represent minimum, mean and maximum place-
ment error margin.

The second strategy looks for improving how underground data are rep-
resented in an AR application. In this regard, Schall et al. [57] proposed an
excavation tool, which simulates a hole on the ground and makes pipelines visi-
ble. Their work was later extended [37] so that the application could assist with
the maintenance tasks of underground utility networks. They also compared
their excavation tool with trench-like and shadow-like representations. Chen
et al. [58] combined the X-Ray vision approach with aperture focus and context
concepts to extract the depth order and mobile elements of a scenario. This
information enables the generation of blending masks to draw the occluded ob-
jects. Finally, Zollmann et al. [59] compared the use of alpha-blending, edge
ghosting and image-based ghosting techniques for representing subsurface ob-
jects in images.

Most underground-related applications are thought to be useful only in the
context of AR and designed for geological purposes (Lee, Suh, and Park [60]) or
management of power and water underground utilities [54, 56, 37, 61]. However,
multimodal applications, for which the work of Santana et al. [62] is a good
example, are applications that can feature multiple environments, including
virtual globes and VR or AR viewers, to display geo-referenced data. The work
of Santana et al. [62] shows that integrating underground visualization in this
type of applications is still an open problem. In this chapter, a contribution to
that field is done by introducing a visualization scheme of subsurface objects
that remains useful for all of the aforementioned integrated view modes. The
proposal is then illustrated with a use case in which appropriate underground
data and AR, VR and virtual globe technologies are applied.

3.2 About the geo-referenced underground data
sample

The visualization of subsurface infrastructures is a topic which fits in the areas
of urban planning and Smart Cities. It must be taken into account that in those
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contexts, underground data is not only analyzed and displayed in screen, but it
is commonly integrated as a part of larger urban models that include buildings,
pump stations or reservoirs (Delmastro, Lavagno, and Schranz [63], Li et al. [64].
This implies that the data sample for this study should be generated according
to industry standards.

Several standards for representing data related to utilities and underground
infrastructures have been developed, such as the INSPIRE Generic Network
Model ([65]), the ISO standard Industry Foundation Classes (IFC) ([66]) or the
ESRI Geometric Network model ([67]). However, most of them lack of explicit
control over all of the necessary fundamental aspects required to fully model
the physical, functional and semantic properties of arbitrary utility networks in
a three-dimensional context (Kutzner and Kolbe [68]). Therefore, using one of
these data models as the basis for a subsurface feature visualization app may
therefore lead to conceptual and technical limitations. This risk increases as the
application escalates.

Figure 3.1: A section of the UML diagram of the Utility Network ADE Network
component from the repository of Kutzner [69]. The highlighted area depicts
the elements used for rendering and visualization.

CityGML is another standard for the representation and exchange of se-
mantic 3D city and landscape models which is open and promoted by the Open
Geospatial Consortium (OGC). Its data model is based on the ISO 19100 stan-
dards family and it is implemented as an application schema for the Geography
Markup Language (GML) [70], which is also from the OGC. Researchers, devel-
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opers and users of the CityGML standard started creating Application Domain
Extensions (ADE), which enable the extension of the CityGML standard for
the purpose of modelling urban objects that belong to a specific theme. The
Utility Network ADE is one of those thematic extensions. It offers new urban
objects and properties so utility networks and infrastructures can be modelled
with ease. While still in development, it has been shown to be mature enough
to model the constituent features of a real urban multi-network system, as well
as functional and connective relationships within and between networks (Duijn
[71] , Boates, Agugiaro, and Nichersu [72], Boates [73] , Den Duijn, Agugiaro,
and Zlatanova [74]).

Figure 3.2: Spatial extent of the study area with data curated from Open-
StreetMap and a utility network in the CityGML Utility Network ADE stan-
dard.

The Utility Network ADE data model for CityGML uses inheritance and
hierarchical relationships to make common properties shared between features,
while each feature defines its own unique properties. For example, a Round-
Pipe element and a RectangularPipe element are both children of the Abstract-
Pipe element, and so they share properties implemented by the AbstractPipe
element, such as the material type, the intended function or the year of con-
struction. However, the RoundPipe feature implements a diameter property,
whereas the RectangularPipe feature implements properties relative to width
and height (Figure 3.1). These inheritance-based relationships allow the stor-
age of individual features in a manner which lends itself well to a standardisation
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of visualization processes.

For the work described in this chapter, the Utility Network ADE was used
to model a sample multi-network comprised of different kinds of pipes placed
in a district from the German city of Karlsruhe called Technologiepark. For
modelling purposes, the RoundPipe model is used due to it being the most
vastly used on civil infrastructures. Figure 3.2 shows the utility network data
consisting of utility pipes of different diameters, depths and types.

Using this data model resulted in a simple data sample for rendering the
properties of different kinds of features in different networks, while ensuring that
subsequent progresses on rendering abilities can be tested simply by expanding
the data sample. Expanding this data sample is, as discussed above, straight
forward and any use case of a visualization application can likely be addressed.
Furthermore, the direct link to the CityGML core data model supports future
integration with smart city applications.

3.3 The MultiVis mobile application

Figure 3.3: User interface layout of MultiVis for iOS and the three implemented
visualization modes.

The visualization techniques for underground data that will be introduced
in this chapter should be tested on a multimodal application. To do so, there
are two possible options to choose: to create such an application from scratch
or modifying an already existent application. From those, it was decided to
adapt the MultiVis application, which is presented in detail in the works of
Santana et al. [62] and Wendel, Santana, and Simons [75]. MultiVis focuses on
a holistic approach that implements a seamless transition between a traditional
virtual map view to VR and AR modes in a single mobile application. This is
particularly interesting to experts and decision makers as it provides them with
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means to explore results on-site through AR or VR. These two visualization
techniques have been combined with traditional maps for a better overview
and strategic planning capabilities (Wendel, Santana, and Simons [75]). With
respect to the content, it loads a geo-referenced city model which can contain
buildings and points of interest over its geographic area, for which satellital
images and digital elevation models (DEM) are also loaded.

MultiVis has been implemented using the Glob3 Mobile framework ([62],
[76] ). This engine is chosen due to it being highly configurable in terms of
user navigation and level of detail (LoD) strategies. Moreover, Glob3 Mobile is
open-source, which makes easier the work of modifying some aspects of MultiVis
to introduce novel underground visualization techniques. The Glob3 Mobile
API provides native performance on its three target platforms (iOS, Android,
HTML5). 3D graphics are supported by the Khronos Group APIs OpenGL ES
2.0, on portable devices, and WebGL , the web counterpart of OpenGL, on the
HTML5 version. Due to the multi-platform nature of the Glob3 Mobile, API
portability to Android or HTML5 is possible. Figure 3.3 shows the different
visualization modes that were adopted from Santana et al. [62] and ported to
Android.

3.4 Geometrical modelling and rendering

Figure 3.4: Utility network mesh generation process. RoundPipes are extracted
from the CityGML model (orange) for meshing (green). The process generates a
list of straight segments and rounded corners that are tessellated independently.
The final product is a set of tubular shapes signalizing the pipes (Utility Network
Mesh) and surrounding black terrain trenches (Ditch Mesh).

This section focused firstly in the tessellation process of the pipe network
data, which will give two meshes as a result: one representing the actual round
pipes belonging to the network, and another one which represent ditches. Those
ditches, which are introduced in detail the following subsections, envelope the
pipes and are thought to give extra depth cues to the user. Then, the multi-
pass rendering process which stacks both meshes in the image is also explained.
Figure 3.4 describes the different states and sub-stages of this process.
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3.4.1 Meshing pipes from utility network models

Commonly, underground round pipes are characterized as a linked chain of
straight segments and a radius, r. This geometry is presented in a CityGML
LoD2 model accompanied by metadata regarding the inner and outer materials
of the pipes. As a precondition to the tessellation process, the model must
be previously cleaned of consecutive segments in the same direction, which are
merged beforehand. Each one of these round pipes is visually represented by a
tubular mesh of its outer surface.

Figure 3.5: Generation of cylinders from a segment (left, blue) and rounded
corners between two cylinders (right, magenta).

The first step consists in refining the corners of the pipe polyline, which
normally shows sharp corners instead of smooth turns. To do so, each segment
in the set is shortened at both ends by the same length, r, which is the radius
of the cylinder. A cross-section of the tube is generated at each segment end by
rotating a point at a distance r in the direction of the normal of the segment.
The point is then rotated n times (360/n)°, with n being the desired number of
vertices per segment, as it could be seen in Figure 3.5 at the left.

During the smoothing of each bend, the rotation needed to bring each end
of a segment to the start of the next is computed. The pivot point of such
rotation is computed as the intersection of both segment normals. Once the
rotation between segment ends is computed, m new intermediate covers are
generated by rotating γ/(m− 1) (being γ the angle of the joint) the end cross-
section of the first segment. This is best shown in Figure 3.5 , right. Finally,
the tubular surface is subsequently generated by connecting the vertices of all
the computed cross-sections via triangles. The final mesh is stored as a triangle
strip to improve the rendering performance.

3.4.2 Strategies for visualization of underground utilities

The meshed model generated in the previous section has been rendered following
four different strategies, so they can be compared in terms of user experience.
Those strategies, which are summarized in Figure 3.6, are variable static, alpha-
blending, ditches and an excavation tool.
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(a) Static. (b) α-blending. (c) Ditches. (d) Excavation.

Figure 3.6: Tested methods for visualization of underground utilities.

Variable α-blending

Figure 3.7: Pipe transparency is a function from the distance to the camera to
the pipe mesh, computed at the vertices (Vi). DMax is the maximum distance
at which the transparency value (α) should be 0.

The use of transparencies to indicate that an object is below the surface is
widely extended upon from previous works. A simple manner of this effect is to
apply a single value of transparency (α) to the whole object, regardless of how
deep or how far from the user viewpoint it is. Zollmann et al. [59] considered
the option of applying different transparency values for underground elements,
but did not implement the technique, focusing on ghostings instead. Moreover,
which function should be used to assign each in order to convey the sensation
of depth is another issue to be considered.

In this regard, making the function dependent on the distance to the viewer,
Di, is proposed. It is applied to each pipe vertex closer than a maximum
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allowed distance Dmax, as depicted in Figure 3.7. Considering Dmax, Di can
be remapped into the range [0, 1]. Let the result of the remapping be di. This
allows for α values to be assigned according to Expression 3.1:

αi = 0.5 · (1− f(di)) (3.1)

in which f(di) can be any function which returns a value in the range [0, 1]
for any given di. Since the choice of f(di) will affect the final visualization,
several alternatives have been explored. Table 3.1 summarizes the different
alternatives and their corresponding equations. Figure 3.8 shows the variation
of these equation for ranges of di, between 0 and 1.

Figure 3.8: Superposition of the different tested expressions, with values of di
mapped into the range [0, 1].

f(di) Expression
Fixed 0
Linear di

Smoothstep [77] 3d2i − 2d3i
Logistic [78] 1/(1 + e−si), where si = 10di − 5

tanh 0.5 + 0.5 · tanh(si), where si = 10di − 5
arctan 1

3 · (arctan(si + 1.5), where si = 20di − 10
Softsign [79] 0.5 · ( si

1+|si| + 1), where si = 100di − 50

Table 3.1: Different distance-based α subfunctions.

The transparency of each rendered fragment of the model is computed every
frame. However, in order to improve efficiency, the results are stored in graphics
memory, so calculations are only done on changes of the virtual camera position.
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Once all values are calculated, the color information per vertex, including α, is
sent to a shader engine to apply the final appearance of each feature.

Terrain ditches

Figure 3.9: Pipes and their ditches in a 3D scenario simulating a street.

Figure 3.10: Generation of a ditch model (black) surrounding the pipe (blue)
generated for an underground network object (red).

As an alternative to using transparencies, the creation of a second geometry
model to add an underground context is proposed. This model, called ditch, is
semi-cylindrical and surrounds the lower half of the pipe. The ditch is rendered
in the scenario with a flat and dark color, so the pipe seems to be placed inside
and below the ground plane, as seen in Figure 3.9.

The generation of the ditch model is analogous to that of the pipe, creating
semi-cylinders and rounded corners based on the line segments, as well as a
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radius. This allows the creation of both meshes following a parallel process, as
it is appreciated in Figure 3.10, saving computational resources.

Excavation tool

The last rendering strategy considered is to extend the proposal of an excavator
tool, which was done for AR by Schall et al. [57], so it can be used not only in
AR-based applications, but also in applications based on a virtual globe. The
placement of the hole is dependent on user interface events.

For maps, the hole generation is triggered when the user long-presses a
screen pixel, which is then counter-projected to the scenario. If the outgoing ray
intersects a position of the terrain, it is used as pivot for the hole generation. In
a VR environment, the hole is generated at a fixed distance in front of the user.
The hole is then stationary, while the user can walk, take a look and inspect
the revealed underground elements.

To take full advantage of the three-dimensional nature of this kind of scene,
a rectangular area of the DEM is modified in our implementation, so its height is
N meters deeper than the shallower point in that area. In order to preserve the
continuity of the terrain, skirts [80] are generated whenever necessary. Finally,
a textured mesh is created in the edges of the hole region to simulate the walls
of the hole. This can be seen in Figure 3.11.

(a) 3D view. (b) 2D view. (c) Inside the hole.

Figure 3.11: Underground network visualization using the implemented excava-
tor tool extension [37] for virtual globes.

Although depth cues are improved for map and virtual reality by using
this technique, some issues must be addressed before using it in a multimodal
application. For instance, a level of detail (LoD) scheme becomes necessary.
On one hand, for large scale rendering, the LoD may be coarse enough for the
hole visualization to be imperceptible. A possible and straightforward strategy
is to make the region affected by the hole larger as the level of detail becomes
coarser. At the same time, a LoD strategy should also be implemented to
generate new hole elevation models for these cases. Another possibility is to
enable user interaction on the excavation, allowing it to move and change its
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size according to gestures in the screen.

3.4.3 Rendering of underground elements

The MultiVis mobile application, for which the integration of underground vi-
sualization is being discussed in this chapter, has been developed using the
Glob3Mobile framework. This makes possible to use the automatic shader se-
lection and the DAG graph introduced for rendering point markers in Chapter
2 in order to render the underground symbols and elements.

Figure 3.12: Direct acyclic graph for an example where 3 geometry symbols
(pipe, ditch and cover) require 7 symbol instances.

Each one of the different initial branches in the DAG directly corresponds
to a certain manager component, a renderer [81], which takes care of a specific
kind of symbology. As an example, the PlanetRenderer is the branch with
information about terrain and map imagery, the MarkRenderer processes 2D
markers, the MeshRenderer deals with vertices, indexes, textures and other
things needed to generate meshes like the underground pipes, etc. An example
on how it will work for three geometry symbols representing a pipe, a ditch and a
hole wall is introduced in Figure 3.12. During the rendering, PlanetRenderer, the
module in charge of terrain model generation and rendering, is always processed
first. The content included in the rest of the renderers are then processed in a
user-defined order.

A limitation of this scheme is exposed when underground elements are in-
cluded in the scene. If a depth test is performed, underground elements will
not be shown in screen. If depth test is disabled for those particular elements,
they will be rendered on top of every above-ground object, losing all depth cues
and potentially confusing the users. This is the starting point for the alpha-
blending strategy. For ditches, a multi-pass rendering scheme [82], also called
layered rendering, was also implemented on the Glob3 Mobile engine.

To achieve the desired effect of terrain transparency, the abovementioned
multi-pass rendering strategy renders different layers of the scenario with inde-
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pendent depth buffers. Renderers containing the underground symbology are
set as second-pass renderers. In case there are over-surface elements that could
eventually occlude the underground network (e.g: building models), their ren-
derers should also be marked as second-pass renderers.

At the time of rendering, the planet and first-pass content are drawn first.
After that, the Depth Buffer is cleared. This enables the use of the depth test
with underground information. Finally, the elements contained in second-pass
renderers are drawn over the same FrameBuffer in the pre-established order.

3.5 Experimentation and user survey

To compare the behaviour of the different proposed strategies and determine
the one which results in the most convenient visualization, a survey has been
conducted with users applying a methodology similar to the one introduced in
the work of Mirauda et al. [61]. The users are required to navigate through the
MultiVis application in a 3D scenario, which includes representations of objects
over the surface (buildings, trees, sensors, etc) and objects below the surface.
Underground objects will be represented using one of the proposed strategies.

Figure 3.13: User interface layout for the survey in the Android platform.
Underground-related selectors are added to the control panel.

The survey participants are asked whether the pipe network looks like it
is placed below the surface or not, for all the different f(di) functions tested
for the α-blending technique, as well as for the static, ditch and excavation
strategies. Responses are encoded so that their answers fit into a 5-point Likert
scale. A value of 1 indicates that the participant felt like the feature does not
look like it is underground at all. A value of 5 indicates that the participant



3.5. EXPERIMENTATION AND USER SURVEY 63

felt like the feature was certainly underground. Additionally, users were invited
to experiment with different Dmax values for the function of their choice and
indicate the value which, in their opinion, made the visualization more useful.
Extra controls have been included in the MultiVis interface for the survey, and
they are shown in Figure 3.13.

Figure 3.14: Answers of the survey participants per method.

The collaboration of 30 participants were interviewed for the study. All
genders and ages between 16 and 75 are represented in the sample. 17 people
from the sample declared they had previous technical experience. The answers
of this questionnaire, organized by method, are introduced in Figure 3.14.

People Mean Median Standard deviation
Technical users 17 3.235 4 1.393

Non technical users 13 1.923 1 1.256

Table 3.2: Variability on the validation of ditch technique between users with
and without previous technical experience.

The results of the survey reflect that the use of new techniques for under-
ground visualization improves the depth cues obtained from using a static α
blending. From the explored methods, the one which was best received by the
survey participants was the excavation tool, with an average rating of 3.8 and
a median of 4. From the variable α functions, survey participants tended to
prefer the softsign function (average rating 3.53, median 4). Other options,
like sigmoid and tanh, were also appreciated, but there was more variability of
perceived effectiveness among the test subjects. The ditch technique was, on
average and according to the survey participants, the least effective method,
again with an average rating of 2.67, a standard deviation of 1.47 and a high
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variability in the responses. With respect to the ditch methodology, a trend was
also observed in the responses.

As Table 3.2 shows, users without technical experience had more difficulty in
understanding the ditch technique and tended to interpret what they are seeing
as over-surface structures, while most of the technical users found it effective.
Considering that tools which deal with underground utility information are
normally intended for people who have technical experience and work in the
field, the ditch technique could still be a possibility to present the underground
information in a multimodal application for which the target user group is one
with significant technical experience. The excavation tool and the variable alpha
blending appear to be the most generally accessible methods. However, these
results suggest that a more thorough investigation should be conducted on how
the previous technical information of users affects their comprehension of a 3D
scene showing 3D subsurface network elements.

Figure 3.15: Distribution of preferred Dmax distances.

With respect to the most appropriate Dmax , the mean of the responses
was 844.44 m., with a standard deviation of 972.84 m. However, almost two
thirds of the users preferred a distance between 100 and 500 m, as it could be
seen in Figure 3.15, which makes the median value, 300 m, an acceptable initial
setting for Dmax. The mode value, 200 m., is also a good initial setting for
Dmax in the MultiVis app, due to its disproportionate representation in the
overall responses. Although, several users indicated they preferred to maintain
a general view of the utilities in the area, and therefore chose a Dmax larger
than a kilometer. This fact suggests that a multimodal application which wants
to take advantage of a variable α blending method for visualization should offer
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this option as a user-adjustable parameter.

3.6 Conclusions

In this chapter, several alternatives for the visualization of underground struc-
tures have been discussed for its use in a multimodal application. An alpha
blending strategy has been considered in which the viewer-object distance is
mapped to the transparency of each feature in different ways to give depth cues
to the user. A set of mapping functions where implemented and analyzed for
such a purpose. Furthermore, a novel technique for representation of subsur-
face utilities, named “ditches”, has been proposed. Finally, an extension for
multimodal applications of the excavation tool of Schall et al. [57] was further
developed. These techniques have been implemented as an extension of the
MultiVis app [62], a proof of concept for the integration of CityGML spatial
data and the Glob3 Mobile library for 3D data visualization to test whether the
CityGML data standard is suitable for multimodal visualizations.

Figure 3.16: Proof of concept of ditch highlighted with borders to enhance
depth perception. Evenly spaced tick marks along utilities also provide further
information to the user.

The behaviour of these techniques were validated by conducting a user ex-
perience survey with 30 participants in which all the visualization techniques
are demonstrated to represent different underground water pipe networks in the
case study located in the city of Karlsruhe, Germany. The results reflect that all
techniques are more effective than the reference method, a static transparency
blending. In general, users found more effective depth cues while using the exca-
vator tool extension. The distance function which achieves better visualization
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results for variable transparency blending was found to be the softsign function
method. This method was also rated as the overall second best rated tech-
nique. Most participants preferred a maximum distance of subsurface utility
network feature visualization between 100 and 500 meters. Finally, a pattern
in the ratings of the ditch technique suggested that the previous knowledge and
experience of the users may affect their comprehension of the visualization of
subsurface utility networks.

However, the prototype and the techniques introduced in this chapter still
have limitations to render some underground network elements. Namely, the
connection of underground utilities with buildings and other above-surface struc-
tures has to be factored into the rendering pipeline. Finer detailed models would
also be of use for photorealistic applications, which would have to be produced
by the tessellation system. Moreover, only CityGML LoD2 models have been
used due to the lack of higher detailed city models. Those models could be too
coarse for realistic representations, especially in the VR mode, where the user
has a complete immersive experience. In the same way, for use cases as the
AR that require high positional accuracy levels, GPS positioning may lack the
required accuracy.

Figure 3.17: Proof of concept of a cartoonish hole styling with user interaction
for the excavation tool.

These facts open future lines of work which involve working with visual
odometry tools and beaconing devices to overcome this issue and provide higher
positional accuracy of the app. Improvements in the general appearance of the
ditches and holes, like the proofs of concept shown in Figures 3.16 and 3.17,
can be studied in order to see it they improve the understanding of the scene.
Additional user interactions can be integrated to better adapt the excavation
tool to the needs of multimodal applications, and further user experience sur-
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veys should be conducted in order to determine possible enhancements on both
visualization and usability.

Besides these further technical implementations, it will be necessary to estab-
lish and extend current cartographic rules for the representation of underground
features. From the literature review and the current research and commercial
applications it is extracted that most applications that show underground infras-
tructure are lacking on the visualization side. Current cartographic guidelines
and visual variables are lacking the support for underground infrastructure visu-
alization. Existing cartographic principles should be adopted to the usage and
visualization of underground infrastructure in outdoor environments in immer-
sive ways. Although Becker and König [83] already presented first representation
strategies for utility network data, they are still lacking visualization guidelines
for utility networks in immersive environments. The establishment of such new
rules will be beneficial for further developers to create better and more intuitive
visualizations and applications.
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Chapter 4

Modelling buildings from
open vector data

In the previous chapters, two different proposals have been introduced which
involve point data and line data, respectively. This chapter introduces the third
main type of vector data: the polygon. Unlike lines, polygons always form
closed circuits, connecting at least three points starting and ending in the same
points. Polygons can be found in country, region and municipality borders,
perimeters of lakes, seas or forests, cadastre data or geo-referenced 3D models,
among others. The latter two ones play a major role in the development of
smart city applications.

Traditionally, 3D city models were purely based on graphic and geometrical
models and developed only for visualization purposes. However, the generation
of such models has changed in the last years as semantic aspects have been
progressively included for analysis purposes. Standards for data modeling as
CityGML [70] have been created to add thematic properties, taxonomies and
feature aggregation to the graphical appearance. This way, different items (e.g.
building installation) and data (e.g. building energy characteristics) can be
integrated within a single framework at different Levels of Detail (LoD) [84].

However, for smart city modelling the requirements are different than for
visualization. Smart city applications require geometrically correct surfaces,
which are not always achieved when the model is generated via photogrammetric
techniques [85]. Errors can be produced due to wrong definition of normal
vectors, lack of planarity in the building surfaces or polygon nesting in a single
surface [86]. Some of these problems require a significant amount of time to
be fixed and thus the generation of simplified building models (CityGML LoD1
and LoD2) are preferred as they fulfill the energy analysis requirements.

The Light detection and ranging (LiDAR) [87] technology can ease the au-
tomatic generation of such simplified models. Sensors based in this technology
emit a laser pulse and receive an echo response from the objects in the targeted
area. The time between the emission and that incoming echo and the direc-
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tion of the laser beam are used to obtain the position of the object in which
the laser rebounds. The accumulation of these positions generate a point cloud
that represents accurately the area near the sensor. LIDAR devices can be
differentiated in two categories: waveform sensors, which offer the whole laser
return, and discrete sensors, which capture only a certain number of returns.
This number varies depending on the device: most models provide between 3
and 5 returns. The generated data is normally presented as point clouds, whose
points include, at least, accurate X-Y-Z values, an intensity value and its associ-
ated return number. Some sensors also add extra information about each point,
like RGB color values. A frequently used format to represent these point clouds
is the Laser File Format (LAS), whose specifications can be found in [88].

In this chapter, a novel methodology is proposed to generate standardized 3D
building models out of open LiDAR data, so the resulting models are suitable
for analysis and modelling in smart city applications and not limited to any
geographic region. The methodology is capable to differentiate between five
categories of buildings according to their rooftops and propose a CityGML LoD2
model for the building based on the data and the chosen category. This research
has been done thanks to a partnership between the University of Las Palmas
de Gran Canaria and the European Institute for Energy Research (EIFER) and
has been already introduced in [89]. It addresses two current issues in the
generation of 3D building models from open LiDAR data sets: (1) the need
for a more precise feature extraction of rooftops from LiDAR point clouds, and
(2) the development of novel line generalization algorithms that can be used to
automatically generate geometrically and semantically correct 3D models for the
integration, analysis and modelling of smart cities applications and processes.

4.1 Related work

During the last decade, many authors have worked on different methodologies
to reconstruct 3D building models from LIDAR point clouds. Their approaches
are usually classified into two categories: data-driven and model-driven [90].

On one hand, model-driven methods try to reconstruct building models by
adjusting well-known primitives, represented by a number of parameters, to a
subset of data from the point cloud. This kind of methods have the advantage of
being robust and easy to compute, but they still have challenges where structures
are quite complex or do not match well with the predefined models. An example
can be seen in the work of Henn et al. [91], where plane primitives are extracted
by using RANSAC and the selection of the best model relies on a Support
Vector Machine (SVM). Yang and Förstner [92] used Minimum Description
Length (MDL) instead of SVM to determine the best possible model from the
primitives. Zheng and Weng [93] decomposed complex footprints into non-
intersecting, quadrangular blocks and calculated different parameters for every
block. A decision tree uses then the parameters to classify every block into one
of 7 possible roof categories. Zhang et al. [94] combined LiDAR data and aerial
imagery to generate a cost function that help optimize the geometric primitives
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that compose a roof. In the work of Kada and McKinley [95], complex footprints
are also decomposed and their normals calculated. Then rules are established to
discriminate the rooftop into 5 possible categories according to its major planes.
And more recently, Castagno and Atkins [96] used the output of a convolutional
neural network as input for SVM and decision tree classifiers for 8 types of roof
models.

On the other hand, data-driven methods aim to find features, such as planes
or line boundaries, from the raw dataset and then aggregate them to generate
the building model. Normally, those methods are more accurate and work on
any kind of structures, but have a higher computational cost.

Data-driven works differ on how to process points and generalize outlines.
Several works [97, 98, 99, 100] use region growing to segment points and find
candidate roof areas. Clustering techniques are applied for similar reasons in
[101, 102, 103, 104]. Wang et al. [105] used a voxel-based algorithm to segment
buildings and extract roof points. In the work of Awrangjeb and Fraser [106],
building masks were generated to extract points belonging to each building.
A genetic algorithm is used in the work of Pahlavani, Amini Amirkolaee, and
Bigdeli [107] to select the best features from a set to find the building areas.
The study of Yang et al. [108] takes advantage of the scale-space theory to
generate a graph of roof features and generate diverse LoD representations of
each roof. Yan et al. [109] separated non-ground points and presents a modified
version of the snake algorithm to fit the surfaces. Outlines are extracted after the
generation of triangles from points in [110, 111, 112]. Awrangjeb [113] presented
an algorithm to better extract edges and corners and thus generalize better a
complex building footprint. Finally, Wu et al. [114] used a graph-theory-based
contour tree to represent the topology structure of buildings. Building parts are
separated analyzing topology relationships and final models are reconstructed
via bivariate graph matching process.

Some other works also combined both approaches, as the one of Fan, Yao,
and Fu [115], which regularize all kinds of non-flat rooftops as sets of gabled
roofs and looks for roof ridges for extraction. Many other relevant studies that
deal with 3D reconstruction of buildings from LiDAR point clouds are included
in the survey of Wang, Peethambaran, and Chen [116].

Despite the large amount of studies that have been already done in relation
to modelling buildings, it is still possible to find some research gaps. One of
them is that most of the methods used for segmentation of rooftops in previous
works are either dependent on a predefined number of clusters (k-means), too
heavy in terms of computational cost (region growing) or they were proposed
for detection of curved buildings [102]. There is still space for proposing a
solution which does not require to set the number of clusters and can be used
in a larger amount of cases. A second one is the fact that that regularizing a
footprint is still an open problem. Common line simplification algorithms, as
Douglas-Peucker [117], usually depend on a non-intuitive parameter which can
remove critical points when not well set and thus the regularized line will not
respect the original shape of the surface. Other algorithms, such as the one of
Zhang, Yan, and Chen [118], look for detecting the two principal directions of the
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buildings. That implicitly assumes the buildings always have a quadrangular
shape and thus all angles are of 90º. Finally, snake-based algorithms either
require knowledge about the expected shape or could result in an inaccurate
footprint shape. There is still room to make improvements, such as proposing
an algorithm which can generate footprints out of multiple building shapes with
none or at least a short and intuitive interaction of the user.

The approach which is introduced in this chapter tries to overcome the re-
search gaps and take advantage of both model and data driven approaches. It
relies on clustering to find candidate roof surfaces, but using anisotropic filtering
and agglomerative clustering techniques, unlike other clustering works. A new
corner-based algorithm is introduced to extract footprints.And additionally, the
methodology makes use of MLESAC [119] to find plane primitives and apply
rules to categorize the rooftops.

4.2 About the data sets

Figure 4.1: Map showing the studied area in Logroño and the available OSM
footprints.

For this work, free and open LIDAR point clouds and building footprint data
for the generation of the 3D city models are required. It was chosen to use an
open point cloud data from the Spanish Geographical Institute representing the
city of Logroño. The cloud, which can be found at [120], has 12086959 points
and covers an area of 2×2 km. with a minimum density of 2 points per m2. The
bounding box of the chosen area is [42.4511,−2.4649; 42.4690,−2.4404]. This
area was chosen because of it having a wide variety of rooftops belonging to
old and modern buildings in a relatively large extension, for which their cor-
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responding footprints are available online. An image representing the selected
area can be seen in Figure 4.1.

Likewise, open footprint polygon datasets can be found in several web map-
ping services, such as OSM, as well as in many geo-referenced data portals
belonging to local and national mapping agencies. For this study, a dataset
containing 454 footprints from the same 2 km. area of the city of Logroño has
been downloaded and processed using the Overpass API [121]. Those footprints
represent 1261 individual buildings with a minimum area of 30 m2. For the
quality assessment of the methodology proposed in this chapter, a ground truth
of roof categories was manually crafted for each one of the buildings.

4.3 The proposed pipeline

In this chapter, a pipeline for the generation of LoD1 and LoD2 CityGML
models from open LiDAR point clouds is proposed, whose stages are introduced
in Figure 4.2.

Figure 4.2: Architecture of the proposed pipeline for city model generation from
LiDAR data.

As an overlook of the complete proposed pipeline, the process can be de-
composed on the following tasks:

� Segmentation of the point cloud and selection of the points of a certain
building, given a LIDAR point cloud and a building footprint.

� Discrimination of wall and roof points. Wall points are then dismissed.

� Grouping of roof points into different roof surfaces belonging to differ-
ent buildings inside the footprint, when necessary. In that case, smaller
footprints for each cluster are automatically generated.
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� Searching of planes and extraction of features and intersections between
planes. That information is used to categorize the rooftop. 5 categories
are defined to do so: flat, shed, hipped, pyramidal and complex.

� Generation of roof polygons and wall polygons to complete the building
model.

The stages of the pipeline are thoroughly explained in the following subsec-
tions.

4.3.1 Removing wall points

Given all the points inside of a footprint, discriminating which points belong to
vertical walls can be achieved by categorizing the horizontality of their associ-
ated normals. To do so, the normal vector of each point is computed according
to their 8 nearest neighbors by applying the method of Hoppe et al. [122].

After that, the verticality θV of the plane which best fits each point is as-
sessed, using Expression 4.1, where N refers to the normal and Z is the upwards
direction.

θV = arccos(|N · Z|) (4.1)

It is expected that a point belonging to a wall has a θV angle near π
2 (90◦),

so any θV in the range [π2 − ω,
π
2 + ω] is considered to belong to a wall. The

value for ω has been set experimentally and can be found in Section 4.4.

Figure 4.3: Discrimination of wall and noisy points (red).

The remaining roof points are then filtered to simplify the ulterior generation
process. Given the normal and mean position of a point and its neighbours, a
container plane is established for that wall patch. Points too distant from their
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corresponding planes are considered outliers due to noise or unnecessary details
that will be not shown on the final model.

This point-patch distance can be computed by solving Expression 4.2, for
each point (x0, y0, z0) and the plane a · x+ b · y + c · z = d :

Dp =
a · x0 + b · y0 + c · z0 + d√

a2 + b2 + c2
(4.2)

By means of Dp , the “noisy” points are also removed from the dataset when
|Dp| < ε1 m. A point will be considered wall point and removed if it has passed
one of the two tests. In Figure 4.3, it is possible to see a result of this stage.

4.3.2 Recognizing different roof surfaces

The resulting non-wall points belong to one or multiple roof surfaces, depending
on the number of adjacent buildings inside the footprint. The remaining points
also may include little ground areas that should be removed. A clustering
algorithm should be applied in order to segment the point cloud into different
surfaces. In the choice it should be taken into account that a certain number
of groups cannot be expected, and also the fact that some urban clouds lack of
enough density could make harder to detect the correct surfaces.

Figure 4.4: Different roof surfaces, shown in different colours, found for the
example of Figure 4.3. Black points represent walls, ground or noise.

To overcome these issues, a local transformation is applied to the point cloud
prior to the agglomerative clustering algorithm [123]. The anisotropic scaling
transformation exaggerates differences in the z coordinate and diminish the
differences in x and y coordinates, and it is applied to all the non-wall points.
This is shown in Expression 4.3, where fxy and fz are the factors to transform
the point cloud. fxy depends on the point cloud density and should be a number
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between 0 and 1. On the contrary fz always be greater than 1 for exaggeration.
The final sets of both values in this work can be seen in Section 4.4 as well.

p′i = pi � [fxy, fxy, fz]
′ (4.3)

Finally, the agglomerative clustering algorithm is run over the transformed
cloud. Euclidean distance is used to aggregate points into a group. A cutoff ε2
representing the maximum allowable distance to agglomerate points and clusters
should also be defined. An example of how different roof surfaces could be found
using this stage is introduced in Figure 4.4.

4.3.3 Classifying the roofs and generating the building
model

Each roof surface detected in the previous stage of the pipeline represents a
building. For every building, a CityGML, LoD2 building model are generated.
A building model requires a ground polygon, a variable number of roof polygons
(depending on the type of roof) and a variable number of wall polygons. The
goal is to generate a mesh of minimal complexity while still conserving the shape
of the building.

Depending on the number of different building surfaces detected inside a
footprint, it can be necessary to extract and generalize a ground polygon for
each one as a first step. That only happens when more than a building surface
is detected in the local point cloud for the input footprint area and so several
building models should be created. Then, the type of roof will be estimated
from the planes it consists of and their intersections, and different roof polygons
will be generated according to it. Finally, wall polygons are generated between
the ground polygon vertices and the roof polygon ones, as an extruded polygon
with the footprint as the base.

The ground footprint: a corner-based polygon simplification algo-
rithm

When multiple building surfaces are detected, new ground polygons should be
created for all of them, as the original footprint represent the united set of
buildings and not each individual building. A first approximation on the matter
is to generate a unique 2D α-shape [124]. The algorithm looks for finding the
minimum largest allowed edge (the α value), which encloses the roof surface
on a single polygonal boundary. The boundary created with this technique has
much detail and generates small and irregular lines, that should be simplified
so the representation remains close to the actual building. To do so, a novel
corner-based polygon simplification algorithm is proposed. It removes needless
vertices by using the following strategy:

1. For each boundary point, a window of m points and the two polylines
before and after each point pi, lli = [p − m, . . . , p − 1] and rli = [p +
1, . . . , p+m], are defined. Considering the polygon as a circular list, point
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indices are modular. Given this, we can define the left and right difference
vectors, vl and vr, as in the following Expressions 4.4 and 4.5:

vl =

m∑
1

(
lli − pi]

)
(4.4)

vr =

m∑
1

(rli − pi) (4.5)

And an angle βp between the vl and vr vectors is computed as in Expres-
sion 4.6:

βp = π − arccos ((vl · v′r)÷ |vl| ÷ |vr|) (4.6)

2. The βp computed for all the vertices can be expressed as a function f(pi).
Therefore, the local maxima of that function can be found. This can be
appreciated in Figure 4.5. All the peak points whose βp value is greater
than a salience threshold θC considered corner candidates. θC can be
adjusted according to the shape of the buildings in the set and the user
needs.

Figure 4.5: Corner candidates chosen from the polygon vertices of the green
rooftop from Figure 4.4, based in their βp values and θC = 30◦.

3. For all the points between two corner candidates, including them, the line
that fits them the best is computed. The intersections between all the
lines are then found, and the corner positions are updated with the ones
of these intersections. This process results in the final footprint of the
building. The final result for the example of Figure 4.5 after applying this
correction can be seen in Figure 4.6.
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Figure 4.6: Final building ground footprint for the green rooftop in Figure 4.4
(blue line), against its initial boundary generated using 2D α-shapes (green
points).

Identifying the roof category

Figure 4.7: Plane extraction for the complex roof surface sample from Figures
4.4, 4.5 and 4.6.

In order to determine the category of the roof and thus create the necessary
roof mesh, it is required to find all the planes within the surface. To do so,
MLESAC [119], a variant of the RANSAC algorithm, is used. Some parameters
of MLESAC can be configured, being the most important one the error margin,
ε3, to select planes, which is set experimentally. As an example, the plane
extraction done for the roof surface sample used in Figures 4.4, 4.5 and 4.6 can
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be seen in Figure 4.7.
Once the roof planes are defined, a set of several rules categorize the rooftop:

1. There is a unique plane, or one of the planes occupies more than 70%
of the rooftop area: the rooftop is classified as flat or shed. When the
difference in height between all the points in the plane is below 1.5 m.,
the category is flat. In that case, the final simplified building mesh is
the extruded footprint polygon with the mean z of the rooftop points as
height. Otherwise, the category is shed. In this case, the z values for
the roof polygon vertices equals the height of the closest point in the roof
cloud.

2. There are two intersecting planes and together they occupy at least 60%
of the rooftop area: the rooftop is considered hipped. In this case, two roof
polygons are created in the following manner:

(a) An extruded polygon ep is generated in an analogous manner to the
flat case. The z components are set to the lowest height in the roof
surface.

(b) The intersection line between the two planes is calculated. From all
points close to the line, the two in both ends of the line, h1 and h2,
are included in the polygon, between their closest two vertices. The
z component of the two new vertices are assigned the highest height
in the roof surface.

(c) The final rooftop polygons are extracted from the footprint by divid-
ing ep in two using the line vertices as pivots: r1 = [h1, . . . , h2] and
r2 = [h2, . . . , h1].

3. There are n planes that mutually intersect and together occupy at least
90% of the rooftop area: the rooftop will be considered pyramidal. In this
case, n roof polygons are created as a triangle fan:

(a) A base polygon is the top of the extruded polygonal footprint.

(b) The peak of the rooftop is the intersection point of all the roof planes,
which can be assumed the highest point of the roof that belongs to
all planes. The roof polygons consist of a pair of consecutive base
vertices and the top position.

4. In any other case, the roof surface is categorized as complex. In this case, a
sub-roof surface is created for any detected plane, using the methodology
introduced for the ground polygon. It looks for ensuring the generating
of a result regardless of the shape of the footprint, so triangular or circle
shapes can be processed. For the generation of each sub-roof polygon, the
footprint, the points inside each plane and the intersections between planes
are considered. When there are points of the two involved planes close to
a given intersection line, the polygons for both planes share vertices in
order to avoid possible holes in the generated roof.
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Generating wall surfaces

A wall surface polygon consists of a pair of consecutive ground surface vertices,
g1 and g2, and at least two rooftop polygon vertices, t1 and t2, the closest to
the ground surface vertices.

There is a distinction between the hipped roof case and the general case. In
the general case, the wall polygon is generated following the order: [g1, t1, t2, g2, g1].
For the special hipped case, two of the walls are include one of the line intersec-
tion points, so the polygon will be generated in the order: [g1, t1, h, t2, g2, g1].
The remaining walls in the hipped cases will be created as in the general case.

4.4 Validation of the pipeline

This section introduces the final settings of each parameter of the methodology
and the experimentation conducted to validate its behaviour.

4.4.1 Adjustments of the pipeline parameters

The proposed methodology depends on seven input parameters, ω, ε1, fxy, fz,
ε2, θC and ε3. They refer respectively to vertical angle offset, outlier removal,
anisotropic factors, clustering cutoff, minimum expected angle for footprint cor-
ners, and plane adjusting error margin. For replication purposes, the final val-
ues of all the parameters during the experimentation are provided in Table 4.1.
Most of them have been chosen after a mono-objective optimization with mul-
tiple tested values. For that cases, the range of options and the step between
each tested value is also provided.

Name Type Range Step Value
ω Mono-objective optimization 0:30 1 8 (º)
ε1 Mono-objective optimization 0.05 : 0.25 0.05 0.2 (m)

fxy Mono-objective optimization
{0.1,0.2,0.25,0.33,

0.5,0.66,0.75} - 0.25

fz Mono-objective optimization 1:25 : 4 0.25 2
ε2 Mono-objective optimization 0.5 : 3 0.5 1
θC Semantic - - 30 (º)
ε3 Mono-objective optimization 0.05 : 0.25 0.05 0.1 (m)

Table 4.1: Configuration settings of the different parameters of the pipeline.

4.4.2 Tests and practical results

The proposed methodology has been run over the LiDAR dataset described in
Section 4.2 in order to generate a city model in CityGML format of the city
of Logroño. The main goal of the experimentation is to determine whether the
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pipeline is able to properly classify each type of roof and generate a model for
them.

Predicted
Flat Shed Hipped Pyramidal Complex

Flat 372 0 4 0 1
Shed 0 52 2 0 1

Real Hipped 9 1 223 8 5
Pyramidal 1 0 2 45 1
Complex 5 0 14 25 490

Table 4.2: Confusion matrix of roof surfaces.

A confusion matrix is generated out of the comparison between the ground
truth and the output of the process and introduced in Table 4.2. Additionally,
five quality assessments have been computed and analyzed: the overall accuracy
of the method and four class-wise scores: recall, precision, F1 and IoU. Per class,
the achieved results in all the scores are presented in Table 4.3.

Flat Shed Hipped Pyramidal Complex
Recall 98.7 % 94.5% 90.7% 91.8% 91.8%
Precision 96.1 % 98.1% 91.0% 57.7% 98.4%
F1 score 0.974 0.963 0.908 0.709 0.950
IoU score 0.949 0.929 0.832 0.549 0.904

Table 4.3: Quality assessment of roof classification per class.

The obtained results are promising in general, showing an overall accuracy
of 93.74%. Per category, the pipeline behaves properly for detection of flat and
shed buildings, with F1 scores over 96% in both cases. For hipped class, the
performance is a bit worse but still competitive, being the recall, precision and
F1 scores around 91%. Additionally, the most correct predictions are achieved
for the complex class (98.4%) for a F1 score of 95.0%, which demonstrates the
robustness of the solution. However, there are still issues to be solved regarding
pyramidal roof classification. Although most of the pyramidal roofs are found
correctly (45/49, 91.8% of completeness), the criteria which filter pyramidal
roofs are not sufficiently strict, resulting in a small but appreciable number
(25/534) of complex roofs misclassified as pyramidal.

In Figure 4.8, the CityGML model generation for a sample of each roof class
is shown, compared with its corresponding building point cloud.

Additionally, an integration test was done by loading the output, which con-
tains the generated CityGML models, in FZKViewer1. By using this publicly
available software, it is checked whether the pipeline results are correctly ex-
pressed in the standards. This allows to demonstrate the usability of the final

1https://www.iai.kit.edu/english/1648.php
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(a) Flat roof type. (b) Shed roof type.

(c) Hipped roof type. (d) Pyramidal roof type.

(e) Complex roof type.

Figure 4.8: Meshing of final building models (blue) against their associated
point clouds (red).

result by the community. A sample of the visualization of the obtained results
can be seen in Figure 4.9.

As a final observation, it is worth noting that the size of the final city model
is 21 Mb. This implies a reduction to a 8.64% of the original size of the point
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Figure 4.9: Subset of buildings from the city of Logroño, generated using the
proposed methodology and visualized using the FZK Viewer for CityGML mod-
els.

cloud (245 Mb). Combined with the use of well-known standards, it makes the
data more suitable for their transmission and visualization online in any device.

4.5 Conclusions

In this chapter, a methodology which combines model and data driven algo-
rithms is proposed to extract 3D city models from LiDAR point clouds and
OSM polygons. It starts filtering out wall points and checking whether the
OSM polygon envelopes one or several buildings. The latter case is addressed
by using a novel corner-based algorithm to generate a footprint for each individ-
ual construction. Plane extraction is performed from the rooftop points and a
rule-based system is proposed to categorize the rooftop in base of the extracted
planes and their intersections.

The pipeline behaviour has been analyzed using open data as input. A
LiDAR point cloud dataset from the Spanish government that contains 12.1
million points and has a spatial resolution of 2 points per m2 is combined with
454 OSM polygons which enveloped 1261 buildings in the same area. Promising
results have been achieved, with F1 scores superior to 95% for flat, shed and
complex rooftop predictions, and a 91% in the same quality score for the hipped
category. However, a limitation is found in the detection of pyramidal roofs.
Low precision (57.7%) is observed due to false pyramidal positives in complex
building. The generation of CityGML LoD2 models is also tested. The 245 Mb
input point cloud is translated into a 21 MB model. The final output followed
the standards and is properly visualized in a popular open-source software for
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semantic data visualization.
Two lines of work are open for future research. One of them involves im-

proving the rule system to better differentiate pyramidal and complex buildings
and apply the proposed method in other datasets. Using only point clouds
from the open LiDAR repository from the Spanish government, the potential
of city model generation has the scale of an entire country. Additionally, other
benchmarks and sources of different densities and countries can be explored as
well. The other one is focused in comparing the resulting model with the input
data to ensure the topological correctness of the output. Having accurate build-
ing models is key in order to exploit the city model in smart city and energy
oriented applications. Those applications can include simulations of heating
and cooling needs, energy consumption, solar radiation and potential for photo-
voltaic energy generation. Accurate models can also be used for visualization
purposes in virtual globe applications, augmented reality and virtual reality,
which demonstrates the utility of the research line opened in this chapter.



Chapter 5

Ground filtering and DEM
generation from point
clouds

As mentioned in the previous chapter, LiDAR is a remote sensing technology
whose use has become widespread in the last few years for a variety of tasks.
These tasks go from the 3D city modeling [116] to land cover detection and
management [125], including others as power line management [126], aerosol
gas detection [127] or autonomous driving [128].

Most of these tasks require an automatic and reliable detection of objects
in the point cloud, which has led to the appearance of several algorithms for
classification and generation of Digital Elevation Models (DEM) from LiDAR
point clouds. However, as it is stated in the literature review survey from
Chen, Gao, and Devereux [129], there is still no perfect methodology capable
of dealing with all the possible scenarios (rural, urban, mountainous, etc) at
once. Hence, the problem is still open for new solutions and improvements.
This is easily visible by checking the results from commercial software used by
companies throughout the globe to perform their tasks. Most of the ground
filtering algorithms implemented in those software rely on parameters that are
hard to adjust and could produce severe misclassifications, as the one seen in
Figure 5.1. This fact forces subsequent undesirable human interventions to
refine the results and properly complete the task.

In this chapter, a novel algorithm for ground filtering, called Patch decision
tree, is introduced to minimize this kind of misclassification errors. It adds a
clustering routine for minimum local points, whose result is a set of patches, to
the classic multiscale analysis methodologies. Features are then extracted for
each generated patch and it is determined whether it belongs to the ground or
not by using a decision tree. The final classification can be later used in an
extension of this work, presented in [130], as input for the generation of DEM
in the form of triangular regular meshes.

85
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Figure 5.1: A classification of ground (yellow) and building (purple) generated
using the commercial software TerraSolid. The majority of tools of this kind
use window-based algorithms, which results in an inaccurate classification when
the window size is not properly selected.

5.1 Related work

During the last years, a great number of authors have proposed different method-
ologies for classification of ground points and generation of digital terrain models
from LiDAR data. Some of them become widely used and have commercial im-
plementations, like the Robust Filtering algorithm of Kraus and Pfeifer [131]
or the TIN adaptive filtering of Axelsson [132]. Although there are exceptions,
most of the classical ground detection algorithms perform two steps [133]: con-
verting from a raw point cloud to a regular grid, which usually requires an
interpolation technique, and filtering the non-ground points from the cloud.

In order to convert from point cloud to grid, multiple techniques have been
used. Linear deterministic and non-deterministic interpolators for this task have
been analyzed in the work of Anderson, Thompson, and Austin [134], including
the Inverse Distance Weighting (IDW) [135], the Linear Least Squares method
[136] and the Kriging method [137]. Adaptations of morphological filters have
been applied for this task in the work of Chen et al. [138] and surface fitting
functions have been used in the work of Okagawa [139].

In the filtering part, the studies can be split into several categories, from
which slope detection, triangular irregular networks (TIN), morphological filters
and multiscale analysis are the most widely used. Examples of the morphologi-
cal category are the work of Zhang et al. [140], which defined 3D morphological
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operators of erosion and dilation, and the study of Li et al. [141], which in-
troduced an improved top-hat filter which takes plane inclination into account
to better distinguish between buildings and hill-like accidents. Morphologi-
cal opening operations were combined with multi-scale windows to extract the
rooftops in the work of Li, Sun, and Yan [142]. The Elevation Threshold with
Expanding Window (ETEW) algorithm from Zhang and Whitman [143] and the
three-windowed height threshold comparison from Rashidi and Rastiveis [144]
are also good examples of multi-scale filtering methods. Inside the slope cate-
gory, studies like the one of Sithole and Vosselman [145] can be found. They
created a local slope operator based on a point-slope surface, from which the
gradient is computed and a cutoff plane per point is generated. This cutoff
plane is then compared against the cloud to filter non-ground points. The slope
filtering method is improved for classification of gentle sloped urban scenes by
Susaki [146]. Finally, examples of TIN-based works applied to LiDAR filtering
are the one of Uysal and Polat [147], which directly applied the previous algo-
rithm of Axelsson [132] to the raw point cloud and validate its behaviour with
LiDAR data, or the study of Quan et al. [148], which used TIN to detect the
borders of buildings and then applied region growing to filter the rooftop points.

Recently, the proposed approaches evolved to exploit the capabilities of ma-
chine learning for the detection of multiple classes in LiDAR point clouds, in-
cluding ground. On this matter, Gu, Wang, and Xie [149] created the kernel-
based MKSRC algorithm to detect four classes of urban elements: tree, building,
wire and ground. Niemeyer et al. [150] used a 2-layered conditional random field
approach which allows classification and segmentation of objects. Winiwarter
and Mandlburger [151] adapted the PointNet++ cloud for detection of 9 classes
from LiDAR point clouds, including two regarding ground: impervious surface
and grass. With the same objective, Zhao, Pang, and Wang [152] and Yang
et al. [153] presented different convolutional neural networks which exploit Li-
DAR and textural information for accurate prediction of different ground and
non-ground elements. Wang et al. [154] introduced a deep neural network which
uses directly the 3D features instead of making a previous conversion point-grid.
And finally, Zhang et al. [155] proposed a graph convolutional network which
considers the spatial relationships between ground and non-ground point for
detection of ground in heavily forested scenarios.

Many other works with strategies different than those exposed here could
be also highlighted, like the one of Bretar and Chehata [156] that uses Kalman
filters and a Bayesian framework to generate DTMs from LiDAR. However, it
is best to refer instead to the survey on all the ground classification techniques
done by Chen, Gao, and Devereux [129] to go deeper on this field of work.

5.2 The patch decision tree pipeline

A pipeline is proposed to filter non-ground points in LiDAR point clouds. The
pipeline architecture can be seen in Figure 5.2. It is composed of four stages: the
dimensionality reducer, which converts the point cloud into patches and grids,
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Figure 5.2: Architecture of the Patch Decision Tree methodology.

which are more efficient in terms of processing costs; the feature extractor;
the decision tree for classification of patches; and the point classificator, which
translates from patch classification to the final classification. Those stages are
explained in detail in the following subsections.

5.2.1 Dimensionality problem mitigation: patches and mul-
tiscale grids

Point clouds normally have different average point densities and, potentially,
tens or hundreds of millions of points. To overcome this problem, its dimen-
sionality must be reduced, and this is achieved by associating each point to a
cell in a rectangular grid according to its X and Y positions. A grid cell rep-
resents a prism with square base (normally 1 m.× 1 m.) and infinite height.
From this association, two products are generated: the patches and minimum
height multiscale grids.

Patches

From the input point cloud, a subset is defined containing all the points P whose
height Pz matches the minimum height for their associated cell. Hence, at least
one point per cell is inserted into the subset, and more than one for those cells
associated with a fully flat surface.

For that subset, anisotropic agglomerative clustering [123] is applied. In
order to stretch the surface, anisotropic factors are defined in their X and Y
coordinates. The same is done in order to exaggerate the Z coordinate and
thus highlight any possible step-like accident in the surface at the moment of
grouping. Steps in the surface is a common sign of a human structure. The
anisotropic scale factors applied are S = [Sxy, Sxy, Sz] = [0.5, 0.5, 3]. The sets
of points resulting from this operation are called patches and can be appreciated
in Figure 5.3.
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Figure 5.3: Generated patches for the ISPRS WG II/4 benchmark - Vaihingen.

Multiscale minimum height grids

To generate this product, the minimum height grid H [157] is first obtained from
the cloud. Derived from it, three grids H1, H2 and H3 are computed, whose
values per cell are the minimum value of three windows w1, w2 and w3 .Those
windows are centered in the same cell of H and have sizes of [n1 ·2+1, n1 ·2+1]
, [n2 · 2 + 1, n2 · 2 + 1] and [n3 · 2 + 1, n3 · 2 + 1], respectively. This is analogous
to what is exposed in the work of Rashidi and Rastiveis [144], with the sole
difference that now the window sizes, n1, n2 and n3, can stay fixed instead of
being tuned depending on the elements of the cloud. Those sizes are thought
to capture short, medium and large sized objects and have been set as n1 = 2,
n2 = 4 and n3 = 6, respectively.

5.2.2 Feature generation

This stage computes different features and attributes for each one of the gener-
ated patches in order to determine whether the patch represents a ground area
or other elements, like rooftops, cars or very forested areas where ground is not
found during the scanning process. They are detailed after these lines:

� Area

The area of the patch is considered to be the area of the 2D α-shape
[124] polygon computed from the patch points, using the critical α. It is
expected that a patch whose area is larger than a certain threshold (e.g.
10000 m2 for a common football stadium) always represents the ground.

� Amplitude

It is defined as the maximum height difference between all the points
in the patch. As a patch only has minimum local height points, and a
rooftop surface generally has an amplitude of less than 2 floors (around
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8-12 meters height), it is to be expected that patches whose amplitude is
larger than a certain amount α2 represent the ground.

� Height step ratios

The height step ratios RH1, RH2 and RH3 are computed from the mul-
tiscale minimum height grids, H1, H2 and H3. The process for the com-
putation of RH1 is here introduced, being the ones for RH2 and RH3

analogous.

Given a point P in the patch, which is associated with a cell [i, j] in the
grids, it is tested if their height Pz fulfills Pz > Hij

1 + θ1. The value of
θ1 is a minimum height threshold, introduced in [144], to consider a given
point as non-ground, with the sole difference that it becomes invariant in
this proposal, unlike in the referred study. The height step ratio RH1 is
then defined as the ratio of the number of points that pass this condition,
divided by the number of points of the patch. It is expected that a value
close to 1 for this feature augments the probability of the patch to represent
a non-ground element.

The thresholds θ1, θ2 and θ3 are defined according to the goal of each scale
grid: detecting small, medium and large objects, in the following manner:
θ1 = 1.75m., θ2 = 3m, θ3 = 5m.

� Covariance descriptors: planarity and eigen-entropy

The covariance features are extracted from a point neighbourhood by
calculating the covariance matrix of their coordinates and extracting its
eigenvalues, λ1 >= λ2 >= λ3 . These eigenvalues are widely used in
the state of the art [152] to gather information from the point neighbour-
hood. Eight characteristics are commonly used [158]: eigen-sum, linearity,
planarity, sphericity, anisotropy, omnivariance, eigen-entropy and omni-
variance. From those, two of them are interesting for analyzing patches:
planarity and eigenentropy.

The planarity Fi of a point, given its neighbourhood and the covariance
eigenvalues, is defined as in the Expression 5.1:

Fi =

(
λi2 − λi3

)
λi1

(5.1)

On its part, the eigen-entropy Ei of a point can be computed as in the
Expression 5.2:

Ei = −
3∑

n=1

λn · log λn (5.2)

A decision on which is considered as the point neighbourhood should be
then made. Some authors [158] suggest cylindrical shapes, using a preset
amount of meters to create the neighbourhood. This is indeed useful when
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Figure 5.4: Normalized punctual eigenentrophy (top) versus the classification
(bottom) for an urban point cloud benchmark. Bluish colors representing low
values eigenentropy are dominant between ground points and human construc-
tions on a minor scale. On the contrary, trees and wires have higher values of
entropy.

the whole cloud is analyzed, but patches are composed only of points with
minimum local height, so a 3D volume-based neighbourhood loses sense.
Another option is to consider the whole patch as the point neighbourhood.
However, as the patch area grows, the points inside the patch have less
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information and hence the information obtained with the covariance fea-
tures become less relevant. The last strategy considered was to use the
closest N points on the patch as the neighbourhood of the point. Eigen-
values obtained in this manner are dependent on the distance between
the selected points, but inside the patches a minimum density of 1 point
per square meter is guaranteed and higher for really flat areas, so this ef-
fect could become interesting for detection of regular patches representing
areas with obvious human intervention. Due to this, the closest points
strategy was selected, using N = 8 points.

To obtain the planarity and eigen-entropy features per patch, the averages
of all punctual values for these features are computed. To save computa-
tional costs, these features are only computed for patches with an area in
the range expected for a building. High planarity values in a patch are
expected to be a cue of human structures. On the contrary, low values
of entropy, as it can be seen in Figure 5.4, are expected to be a cue for
detection of ground patches.

� Ratio of presence of safe non-ground points

To calculate this feature, safe non-ground points should be, from those
composing the original point cloud, the ones whose height Pz are higher
than the value of H for their associated cell plus a fixed amount in meters.
In this work, that amount is preset to 0.5 m. For a given grid cell, the
ratio of presence of safe non-ground points is defined as the number of
such points divided by the total number of points in the cell.

This feature is thought to help differentiate between rooftops and culti-
vation terraces: it is more probable for a patch to represent terrain if
there are many points representing other objects over it, something not
so common in a rooftop.

5.2.3 Decision tree for patch classification

Once the features are extracted, the classification of patches as terrain is com-
puted by using the decision tree in Figure 5.5.

The area and amplitude features enable taking first and coarse decisions to
quickly categorize ground patches in an obvious manner. The height step ratios
RHn split the remaining patches between those which contain no salient points
with respect to the surrounding areas, those which are fully salient and those
which contain salient and non-salient points.

Patches in which all the points are salient are categorized as representing
non-ground areas. Optionally, they could be divided into rooftop patches and
patches representing other elements by using the planarity feature. Patches
without any salient point are categorized as ground. Finally, mixed patches are
categorized using planarity, eigen-entropy and clear non-ground presence ratio:
low planarity, low entropy or high non-ground ratio are strong indicators of a
ground area, so a patch presenting any of those is classified as ground.
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Figure 5.5: Decision tree for the terrain patch classification. Different features
are calculated for each patch and sequentially tested to determine whether it
represents ground or not.

5.2.4 Final point classification

The final stage transforms the patch classification into point classification. All
points with a relative height lower than 0.5 m. and associated with cells covered
by ground patches are considered belonging to the ground (e.g. low grass). The
rest of the points in the cloud become non-ground points.

Optionally, it is possible to classify as building any point whose associated
cell is covered by a non-ground patch with area larger than 15 m2 (the approx-
imate area of a room) and high planarity. However, this class is not considered
for validation in this study.

5.3 Test and practical results

In this section, the tests conducted to validate the behaviour of the proposed
methodology are described in detail, along with the configuration settings and
a description of the test scenarios. All the experimentation has been conducted
in Matlab 2018b.

5.3.1 About the experimental data

Two different benchmark point clouds have been used to test this scenario.

The first one is the well-known ISPRS commission Working Group II / 4
benchmark on urban classification, 3D Building Reconstruction and Semantic
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Labeling. This benchmark is composed of several scenarios containing catego-
rized point clouds and RGB texture information. As this work deals with 3D
semantic labeling, the chosen scenario for the test is the one representing the
city of Vaihingen an der Enz (Germany). For this scenario, the ISPRS com-
mission maintains a record of several algorithms that have used the cloud for
validation tasks and their performing results [159].

The cloud contains around 411000 points, distributed non-uniformly around
an area of 400× 400 m2 with an average spatial resolution of 4 points per m2.
It was first introduced in the work of Niemeyer, Rottensteiner, and Soergel
[160]. The cloud includes a ground truth in which nine classes are considered:
impervious surface, low vegetation/grass, shrub, tree, car, fence, facade, roof
and power line. As this work focuses only on the ground classification, the
nine classes have been reconverted into only two: ground, which includes the
former impervious and grass classes; and non-ground, which is composed of the
remaining seven classes.

The second one is the “dataset 1” shared in the work of Gu, Wang, and
Xie [149], and downloaded from the OpenTopography website [161]. The cloud,
which represents an urban area, has a spatial resolution of around 13 points
per m2. It contains a ground truth that is composed of four classes: ground,
building, tree, and powerline. For the means of this study, the latter three are
comprised into the non-ground group.

The reported results of all the reference algorithms have been adapted to
this binary classification for a fair comparison with our proposal.

5.3.2 Configuration settings

The decision tree presented in this study depends on five thresholds α1 , α2,
α3, α4, α5 related respectively to area, amplitude, planarity, eigen-entropy and
non-ground ratio. For replication purposes, the configuration settings of all the
parameters, which are the same for both clouds, are shown in Table 5.1.

Parameter Setting type Value Range Step
Area - α1 Semantic 10000 (m2) - -

Amplitude - α2 Semantic 15 (m) 0.1-0.9 0.1

Planarity - α3
Mono-objective

optimization
0.5 - -

Eigen-entropy - α4 Semantic 0 - -

Non-ground ratio - α5
Mono-objective

optimization
1.5 1-20 0.5

Table 5.1: Configuration settings for the system. Range and step of tested
parameters are offered for those parameters which were evaluated via mono-
objective optimization.
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5.3.3 Quality assessment and discussion

To validate the behavior of the proposed pipeline, a test has been performed
in which the proposed patch decision tree pipeline is run against the two sce-
narios described before for ground classification. From this classification and
the provided ground truths of each scenario, four quality measures have been
computed per class: recall, precision, F1 score and IoU score. Details on how
to compute these scores are provided in the Annex I.

For each scenario, reference methods from the literature have also been
selected for comparison. Seven algorithms from the list provided by the IS-
PRS [159] have been used as reference methods for the Vaihingen benchmark:
Niemeyer et al. [150], Blomley et al., Wang et al. [154],Winiwarter and Mandl-
burger [151] , Cvirn et al., Zhao, Pang, and Wang [152], and Yang et al. [153].
For all of them, a reference paper or at least a short memory on how the method
works is provided, which allows us to classify them according to the amount of
information they used:

� Only punctual information: Niemeyer et al., Blomley et al., Wang et
al., Winiwarter et al.

� Punctual and imagery information: Cvirn et al., Zhao et al., Yang
et al.

Winiwarter Yang Zhao Cvirn
G N G N G N G N

G 188310 12366 194847 5829 198001 2675 191577 9099

N 11002 200064 13543 197523 4776 206290 13006 198060

Rec. 0.938 0.948 0.971 0.936 0.987 0.977 0.955 0.938
Prec. 0.945 0.942 0.935 0.971 0.976 0.987 0.936 0.956
F1 0.942 0.945 0.953 0.953 0.982 0.964 0.945 0.947
IoU 0.890 0.895 0.910 0.911 0.964 0.965 0.897 0.900

Patch tree Blomley Niemeyer Wang
G N G N G N G N

G 191726 8950 164128 36548 180411 20265 190491 10185

N 14211 196835 5743 205323 6410 204656 18609 192458

Rec. 0.955 0.933 0.818 0.973 0.899 0.969 0.949 0.912
Prec. 0.931 0.957 0.966 0.849 0.966 0.910 0.911 0.950
F1 0.943 0.944 0.886 0.907 0.931 0.939 0.929 0.930
IoU 0.892 0.895 0.795 0.829 0.871 0.885 0.868 0.869

Table 5.2: Confusion matrices and quality scores for the proposed methodology
and seven reference methods against the Vaihingen benchmark. G and N stands
for ground and non ground, respectively.

The patch decision tree falls into the category of algorithms that use only
punctual information as input. The final results obtained from the classification
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for the Vaihingen scenario can be seen in Figure 5.6 and their comparison with
the reference methods can be seen in Table 5.2.

Figure 5.6: Obtained results using the patch decision tree over the Vaihingen
point cloud dataset. Yellow and green stands for correct ground and non-ground
prediction. Blue represents incorrect ground prediction, and red means incorrect
non-ground prediction.

Regarding the second benchmark, the only reference method is the kernel-
based MKSRC proposal from Gu, Wang, and Xie [149], for which a Matlab
implementation is available. The results of the test against this scenario are
shown in Table 5.3.

MKSRC Patch Tree
Ground Non-ground Ground Non-ground

Ground 55175 1941 56995 121

Non-ground 1557 43075 1725 42907

Recall. 0.966 0.965 0.997 0.961
Precision 0.973 0.957 0.971 0.997
F1-Score 0.969 0.961 0.984 0.979

IoU 0.940 0.924 0.969 0.959

Table 5.3: Quality assessment of the algorithm applied over the ”dataset 1”
point cloud. The “MKSRC” methodology from Gu et al. is used as a reference
method.

From the given results it is observed that the proposed patch decision tree
is a promising solution for classification of ground elements in LiDAR point
clouds. A completeness of 95.5% and 99.7% in ground classification have been
respectively achieved for each benchmark, and the quality scores reflect that
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the method is competitive when compared with all the solutions based only on
punctual information. This is best explained in Figure 5.7.

Figure 5.7: A F1-score comparison between different ground classification algo-
rithms over the Vaihingen benchmark.

By looking at the F1 score achieved by each method for ground and non
ground classification, it is clear that the patch decision tree works better than the
methods of Niemeyer, Wang and Blomley and quite similar to the Winiwarter
et al. method in the Vaihingen scenario. (94.3 % versus 94.2 % for ground
classification, but 94.4% versus 94.5% for non-ground classification). It is also
better than the MKSRC algorithm in the second benchmark (98.4% versus
96.9% in ground, which indicates that the algorithm is robust enough to deal
with different point cloud densities and scenarios.

However, the solutions using the extra RGB input still perform better than
our proposal. The method of Cvirn et al. performs slightly better than the
patch decision tree (F1 scores of 94.3% versus 94.5% for ground classification,
94.4% versus 94.7% for non-ground), and the deep neural network proposals of
Zhao et al. and Yang et al. are clearly superior. This opens an interesting
question on whether the RGB extra input could make our schema better and
how to apply it if possible. However, it should not be forgotten that for many
tasks, like inspection and management of facilities or creation of DEMs and 3D
city models, the acquisition of the data is the heaviest process in terms of time,
space and economical costs, and many companies may rely solely on a unique
source of data, generally point clouds. In these cases, the patch decision tree
proposal can add value as it can accurately classify the ground using only the
point cloud as input.

5.4 From patches to DEMs of progressive detail

One of the main applications of the methodology proposed in this chapter for
ground filtering in LiDAR is the generation of Digital Elevation Models (DEM).
Such DEMs are derivative products of high definition, with spatial resolutions
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of few centimeters and very large extents. These data can be saved in vec-
tor or raster formats and be used for geographic applications and simulations.
Additionally, they can be incorporated into 3D visualizations in the context of
scenarios and virtual globes.

Loading highly detailed DEMs for visualization purposes comes with issues
regarding computation, memory and network costs [33]. This problem is usually
addressed with the generation of multiple representations in progressive level of
detail of the elevation model [22]. Such representations allow to keep controlled
the above-mentioned requirements for any point of view, depending only on a
LoD test [76] which acts on a point of view change.

Three lines of work are predominant for LoD generation in DEM. The first
one is based on TIN, which have been already introduced in the related work
section. TIN have been used to create multi-resolution representation by sev-
eral authors [162, 163, 164] for different mesh sizes. However, as the proposed
Patch Decision Tree does not generate a TIN structure for filtering, it seems
unpractical for the scope of this work. A second line is the generation of Trian-
gular Regular Networks (TRN) [165, 166, 167], a mesh type in which all vertices
are aligned in a regular grid. Techniques of this type are easier to implement
but lack of the flexibility of TINs for representing changes in the elevation. An
attempt to mix the advantages of both methods comes with the third line of
work: the Right Triangulated Irregular Networks (RTIN). In RTIN, the vertices
are aligned following a regular grid structure, as well as in TRN, but some tri-
angles are removed from the meshes when unnecessary (e.g: no changes in the
elevation). However, this kind of meshes offer no advantage when used as raster
information in GPU [34].

In this section, a new methodology for the generation of multi-resolution
TRN-based DEMs from terrain points is exposed. It looks for minimizing the
visual differences between each representation. The method, which has been
already introduced in [34, 130], estimates the height values of each vertex in a
TRN of a resolution given by the user. To do so, it relies on solving a linear
system of equations which relate each input point with triangle vertices on the
output mesh.

The method starts by identifying a 2D triangle T in the mesh which envelopes
a given input point P . Suppose a TRN is desired with a resolution [m,n] in
which the system coordinate origin is centered in (X0, Y0). In this supposed
mesh, the minimum difference in the X and Y coordinates between two adjacent
vertices can be expressed as ∆X and ∆Y , respectively. If the coordinates of the
input point (Px, Py) are also related to the origin (X0, Y0), it is straightforward
to find the mesh indices (XG, YG) of the triangle T . It can be done with the
following expressions:

XG =
(Px −X0) (mod ∆X)

∆X

YG =
(PY − Y0) (mod ∆Y )

∆Y



5.4. FROM PATCHES TO DEMS OF PROGRESSIVE DETAIL 99

These indices are shared by two triangles in the mesh. Finding the correct
triangle is done by applying the test XG > YG. The superior triangle is selected
when the test is passed, and the inferior triangle is selected otherwise. With
T properly identified, the barycentric coordinates of P in the triangle T, λP =
(λi, λj , λk can be computed in linear time [168].

Having this in mind, the goal is to find the height coordinates Z for all the
vertices of the mesh so the height differences are minimized with respect of the
input model. Going back to the P example, a punctual error function Ep which
takes into account the point height PZ , the barycentric coordinates of the point
λP and the vertex heights Zi, Zj , Zk for each vertex in the triangle T can be
expressed as:

Ep = Pz − (λi · Zi + λj · Zj + λk · Zk)

When applied to all the input points, this punctual function can be trans-
formed into a global error function E expressed as the average of all the vertex
errors. Such errors can be obtained via linear system of equations:

E = µ(||A · Z −B||)

where A is a large and sparse matrix with a number of rows equal to the
number of input points and a number of columns similar to the vertices in the
output TRN, m∗n. In each row of the matrix A, the barycentric coordinates of
its related point are included in the columns which refer to the involved vertices.
On its part, B is a vector which includes all the point heights PZ .

Finding a solution for Z which minimizes such an error can be done by
using different methods, from which the least squares based LSQR algorithm
[169] is recommended. LSQR admits non-squared matrices and it is particularly
efficient for sparse matrices. By using LSQR, an initial approximation to Z is
found via gradient descent. However, it is possible that most of the global error
obtained is concentrated into few vertices with high vertical errors, which is also
undesirable. This leads to the proposal of a novel iterative stage for refining the
LSQR solution.

For each iteration, the contributions Q of all the mesh vertices are computed
as Q = AT · E. For all vertices Zi which have a contribution Qi > 0, a local
change of Zi is proposed following the rule Z ′i = Zi − α ·Qi. The local change
is applied to Zi if and only if it reduces the global mesh error. α stands for
an adjustable factor which ranges between 0 and 1. However, it was observed
during the experimentation that α = 0.7 offers good results. Iterations must
continue while E−E′ > ε, being ε an adjustable tolerance and E′ the new mesh
global error obtained after applying the local changes. This iterative stage
generates the first LoD representation for the elevation model. Subsequent,
coarser representations can be obtained using this LoD representations to speed
up the process, as TRN vertices can be considered as points for the method
input.

There is a final issue to be considered before using this technique with LiDAR
inputs: how A grows in size against potentially large amounts of input points
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and mesh resolutions. As it is required to solve a linear system of equations
and then run the refining stage, memory consumption and execution times in-
crease exponentially when this methodology is applied on the whole point cloud
at once. To tackle this drawback, a solution is to divide both the input and
the mesh in individual tiles of reduced size and solved each tile independently.
In this manner, parallel computing keeps the execution times controlled. It
should be taken into account that each tile should have a frame of a number
f of vertices width from adjacent tiles. The main reason for this is to ensure
that the tile results are invariant with respect to the results for the full input.
Experimentally, it was observed that a factor f = 10 is enough to guarantee it.

5.5 Conclusions

Figure 5.8: Linear artifacts (green) detected after using the algorithm in a
mountainous scenario with low vegetation. Slope information could contribute
to removing such misclassification.

In this study, a novel algorithm has been proposed for separation between
ground and non-ground points based on patches: clusters of minimum local
height. The algorithm gathers different features of geometrical, covariance or
multiscale analysis origin for each patch and assigns each patch a tag using a
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decision tree. Patch classification is then converted into the final cloud classifi-
cation.

The methodology validation has been conducted against two well-known
benchmarks for which reference results from state-of-the-art algorithms are
available. The Patch Decision Tree has been competitive in both scenarios,
with results of 95.5% in completeness and 94.3% in the F1 quality score for the
Vaihingen an der Enz cloud; and 99.7% in completeness with 98.4% in F1-score
for the dataset1 of Gu et al. These results are better than the ones obtained for
the reference methods that consider the point cloud as the sole input. More-
over, the terrain classification obtained this manner can be used as input for
the generation of regular multi-resolution digital elevation models.

However, the algorithm still has some drawbacks to be solved and three
main lines of potential improvement have been identified in order to improve
the accuracy of the algorithm. One of them is the integration of other sources of
information on the patch decision tree whenever they are available. A second one
is to add slope cues in the last step to correct minor artifacts that could happen
in the final stage when defining which points from each cell are considered non-
ground. The current condition is a simple height rule, which is useful for most
point clouds, but could be not good enough for really complex terrain, as seen
in Figure 8. By adding slope information to the last step, it is expected that
most of these misclassifications can be removed. The third possible line is a
further research on how to differentiate subclasses related to ground (road, low
grass, bare terrain, etc).
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Chapter 6

Detection of urban objects
in vehicle-borne point
clouds

In the previous chapter about ground, it was exposed the need of a proper
ground classification in LiDAR to ease several tasks, which include urban-related
topics. Those topics include simulations and 3D modeling [116], autonomous
driving and pedestrian safety [128] or electrical inspections [126], among others.
Many of these tasks can also benefit of algorithms that identify several types of
urban objects in LiDAR clouds.

At this point, it is already known that LiDAR information can be given in
full waveform or discrete returns, and can include extra information regarding
intensity or color [87]. Additionally, it could be differentiated according to
the device in which the sensor has been installed: terrestrial (TLS) or mobile
(MLS) borne (called generically vehicle-borne in this document), and airborne
(ALS). Airborne point clouds are coarser but more regular in terms of their
point density, while vehicle-borne point clouds are much more dense but the
density decays with the distance to the acquisition vehicle [170]. The higher
density makes the latter more suitable to segment urban scenes.

From vehicle-borne LiDAR point clouds, multiple urban object classes have
been successfully extracted by numerous researchers, including roads, natural
ground, poles, traffic signs, buildings and façades, cars, pedestrians, and trees
[171]. However, it is generally needed to combine different techniques for multi-
class classification of these objects and both accuracy and time consumption
are normally affected. This fact makes multiclass urban classification an open
problem prone to new proposals and improvements.

In this chapter, the novel unsupervised methodology P4UCC for the clas-
sification of five classes of urban objects in LiDAR point clouds is introduced.
It initially extracts the ground areas from minimum height point clusters and
the estimated sensor position and inclination. After that, hierarchical clustering

103
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and local covariance-based feature descriptors are used to extract car and pole
objects from the clouds. Finally, a recursive algorithm extracts vertical planes
from the remaining clusters and decides whether the group represents building
or vegetation. A quality assessment is performed to validate the methodol-
ogy over the Street3D point cloud benchmark, demonstrating its suitability for
urban classification.

6.1 Related work

The topic of urban classification in LiDAR point clouds has been previously
explored by many authors and can be categorized by the features to be extracted,
the classes the work covered, as in this case, whether they made use of supervised
or unsupervised learning techniques.

Supervised machine learning is the most frequent option and, inside it, mul-
tiple techniques have been explored. The combination of weak classifiers and
decision trees with boosting algorithms is used in the work of Gao and Li [172].
Random Forests (RF) were proposed for similar tasks in urban classification by
Chehata, Guo, and Mallet [173]. in 2009. Other authors took advantage of RF
as well, e.g. Fukano and Masuda [174], who combined them with an analysis of
laser strips to detect poles; Weinmann et al. [175], who used them along with
Conditional Random Fields (CRF) and studied appropriate neighbourhoods for
the generation of features to train; or Wang et al. [176], who analysed 2D pro-
jections of the cloud with RF and then established pixel comparisons and voting
frameworks for classification.

Another common approach is super-voxelization, which can be applied to
both supervised and non-supervised techniques. This technique divides the
cloud in voxels and then grouped them in base to the available features by
applying the Voxel Cloud Connectivity Segmentation (VCCS) [177] algorithm.
VCCS results have been used to train RF [178] or CRF [150] classifiers for
multi-class urban classification of point clouds. Other alternative approaches
were the kernel-based machines, with the work of Gu, Wang, and Xie [149] as
a representative example; or the votation frameworks, as the one proposed by
Velizhev, Shapovalov, and Schindler [179] for car and pole shape detection.

Finally, Neural Networks (NN) are also heavily considered for automated
urban classification from point clouds. This branch divides into the architectures
of convolutional neural networks for pixel and voxel classification, in which the
works of Zhao, Pang, and Wang [152] and Yang et al. [153] should be highlighted,
and the point-oriented neural networks, in which a prominent reference can be
found in PointNet [180]. This network allows to determine whether a point
cloud represents a given object. An evolution of this network, PointNet++,
is also introduced by Qi et al. [181] and then adapted by Winiwarter et al.
Winiwarter and Mandlburger [151] for urban object classification. Additionally,
networks as the DNNSP from Wang et al. [154] enabled direct point classification
instead of shape recognition from a point set. Zaboli et al. [182] compared the
behaviour of a NN architecture against other methodologies like RF, support
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vector machines and perceptrons, demonstrating close results between RF and
NN in a benchmark dataset.

Unsupervised techniques are less explored but there are still some relevant
results in the state-of-the-art. Rodŕıguez-Cuenca et al. [183] used hierarchical
clustering and anomaly detection algorithms to differentiate poles and trees
in urban point clouds. El-Halawany and Lichti [184] calculated 2D density of
neighboring points and applied RANSAC line fitting for pole detection, and
Sirmacek and Lindenbergh [185] presented a probabilistic algorithm for filtering
of vegetation points in urban clouds. In this context, the proposal exposed in this
chapter is an attempt to perform multi-class classification by using unsupervised
techniques, where the above-mentioned works discriminated the input data in
only two groups.

6.2 The Progressive 4-staged Urban Cloud clas-
sifier

The Progressive 4-staged Urban Cloud Classifier (P4UCC) is described in this
section to solve multiclass urban classification. It is a four-staged pipeline that
aims to progressively classify ground, car, pole, building, and vegetation points
in vehicle-borne point clouds, using only geometric information. Its general
architecture can be seen in Figure 6.1.

Figure 6.1: Multi-stage architecture of the P4UCC method.

Each stage aims to identify only a certain class. The first one is dedicated to
ground point detection and also generates pixel-wise features which are useful
for subsequent stages. Stage 2 looks for the detection of car points, Stage 3
filters pole points and Stage 4 applies a recursive algorithm for extraction of
wall planes. The presence of wall planes helps to determine the class of the
remaining points between building (those in a wall plane) and vegetation (the
rest). The details about each stage can be seen in the following subsections.

6.2.1 Ground detector

Ground detection starts by dividing the cloud horizontally in a grid with squared
cells of 1 m2. Cell features are computed using the points in each cell: min-
imum height, H [157]; point accumulation, A; and geometric features such as
omnivariance, O; and eigensum, E [158]. Minimum height is used to select the
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ground candidates: all points in the cloud with height lower than Hij + ε1.
Those points are then grouped using a hierarchical approach [123], euclidean
distance and cutoff of ε2.

Cluster centroids and their inclination angles with respect to the horizontal
plane of the LiDAR sensor are then computed. In case the sensor position is
unknown and the point cloud has been taken with a TLS system, the mean of the
point positions for the cell with the maximum Aij can be used as approximation.
This can be seen in Figure 6.2. Such reasoning can be done only due to the
nature of terrestrial point clouds, which are dense in the proximities of the sensor
position and progressively coarser in relation with the square of the distance
[170]. In airborne point clouds this is not possible due to all points being the
flight height far from the sensor as a minimum. For MLS systems, it is also not
possible as the final point cloud is a combination of all the acquisitions of the
LiDAR sensor during the vehicle movement. Hence, the real sensor positions
and timestamps are needed for them. The point clusters deemed ground are:

� Clusters with an inclination angle, α, lower than the one of the vehicle in
which the sensor is mounted.

� The cluster with the largest amount of points.

Figure 6.2: Minimum height clusters and sensor position (left figure, sensor in
red) vs final ground areas (right, yellow).

The use of sensor position and inclination thus allows to heavily simplify
the decision tree for ground patch prediction presented in Chapter 5 in case
vehicle-borne point clouds are being used.

6.2.2 Car detector

Points from cells with Eij < ε3 are considered for car detection. These points
are grouped using the same hierarchical clusters of Stage 1. An area descriptor
is calculated as ∆X · ∆Y . A planarity descriptor [152] is also computed per
cluster. A cluster is considered to represent a car when its area is shorter than
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Figure 6.3: Car clusters (green) chosen from the points considered for car de-
tection.

40 m2 and the planarity is greater than ε4. Examples of this can be seen in
Figure 6.3.

6.2.3 Pole detector

Figure 6.4: Pole clusters (green) chosen from a set of the points considered for
pole detection.

Points from cells with Oij < ε5 are considered for pole detection. They are
clustered, again, using the same hierarchical clustering algorithm from Stages 1
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and 2 with the same conditions.
Per cluster, the following features are the computed: curvature change [158],

dominant component, minimum relative height and deviation of the XY com-
ponent values. Point clusters are classified as poles, as shown in Figure 6.4,
when the dominant component is Z and the following conditions are fulfilled:

� The curvature change is lower than ε6.

� The relative minimum height is lower than 1 m.

� The deviation of the XY point coordinates is lower than 1 in both X and
Y components.

6.2.4 Building detector

The remaining points are grouped as well. A recursive algorithm for the extrac-
tion of vertical planes based in MLESAC [119] is applied to each cluster. The
algorithm progressively looks for planes with an error margin of ε7. Based on
the normal of the plane, the plane points are selected as vertical or not, and
then are removed from the process. The procedure stops when planes can no
longer be extracted.

Clusters with a majority of points in a vertical plane and with ∆Z > 2.5
m. are considered to represent buildings. Otherwise, they are classified as
vegetation.

6.3 Tests and experimental results

In this section the validation process for the pipeline is exposed. It includes
details about the testing dataset, the configuration settings and the quality
assessment performed over the proposed algorithms. All the experimentation
has been conducted in Matlab 2018b.

6.3.1 About the experimental data

In this study, the benchmark Street3D of the SHREC 2020 Conference, track
3 [186] was used. It is composed of 80 point clouds which cover grids of 50x50
m. with sizes between 2 and 5 million points. They were acquired by the
Cyclomedia Technology company using a Velodyne HDL-32E sensor mounted
in a car. The point cloud set represents urban scenarios including objects of
the five above-mentioned classes, plus extra undefined points which are not
considered for evaluation. A ground truth for each cloud was manually generated
specifically for the conference track.

The point cloud set came divided into groups of training (60 files) and test
(20 files) in order to allow the comparison of different solutions in the challenge
that could make use of supervised machine learning approaches. This schema
is kept for validation regardless of whether the pipeline does not use supervised
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learning, so the results can be compared with the solutions of other competitors
in the challenge.

In the test set, 68328274 meaningful points have been found, from which a
57.45% are classified as ground; a 23.50% are classified as building; a 0.83% of
the points belong to the pole class, a 2.33% are classified as car and the final
15.89% as vegetation.

6.3.2 Configuration settings

The pipeline depends on seven thresholds ε1, ε2, ε3, ε4, ε5, ε6, ε7 related respec-
tively to height offset, clustering cutoff, eigensum, planarity, omnivariance, cur-
vature change and maximum error point-plane. Additionally, an inclination
angle, α should be estimated in absence of vehicle data.

Two parameter setting methods have been performed: semantic for those
with a clear meaning, and a mono-objective optimization for the rest, using a
range of possible values of the target parameter. For replication purposes, the
configuration settings of all the parameters are shown in Table 6.1.

Name Stage Range Step Value
ε1 1 Semantic 0.25 (m)
ε2 1 Semantic 0.5 (m)
ε1 1 Semantic 1.5 (º)
ε3 2 0.25:3 0.25 1.25
ε4 2 0.1:0.9 0.1 0.2
ε5 3 0.05:0.5 0.05 0.2
ε6 4 0.01:0.1 0.01 0.01
ε7 4 0.05:0.2 0.05 0.05 (m)

Table 6.1: Relation of parameter settings.

6.3.3 Quality assessment and discussion

In order to validate the behaviour of the proposed pipeline, a test was conducted
in which the pipeline is run against the 20 point clouds of the test dataset
and their results are compared against the provided ground truth. A quality
assessment is then performed, using an intraclass score: intersection over union
(IoU), and two general scores: overall accuracy and mean of intraclass IoUs. In
Annex I, details about the computation of those scores are provided.

P4UCC is compared against the result of four external methods: the Point-
Net ++ of Qi et al. [181], which serves as a reference due to it being well known
and popular amongst the community, and three participants in the conference.
Although the details of each competitor method can be found in the conference
joint paper [186], a short summary of each one is included in the following lines
for better readability and comparison of ideas:
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� Method1 (Duque-Arias et al.): It trains a 2D model from height,
distance sensor-point and point normals using a variation of the neural
network architecture U-Net. The mentioned features are previously con-
verted into 2D using spherical projection. A final layer with a k nearest
neighbours (KNN) classifier is applied to offer the final point predictions
from the network output.

� Method2 (Ku and Veltkamp): It voxelizes and reduces the point cloud
in order to create a graph of fixed-size. A model is trained using a residual-
graph attentional convolutional network for 5-class prediction of the graph.
The final point prediction is performed from the network prediction via
KNN classifier.

� Method3 (Akadas and Gangisetty): It is an adaptation of the Randla-
net deep learning architecture for semantic segmentation [187] so it consid-
ers the XY Z coordinates as point features. Points are subsampled in grids
prior to training and final predictions are determined from the network
output, again, by using KNN search.

Pointnet++ P4UCC Method1 Method2 Method3

Ground 0.9226 0.9646 0.9646 0.9357 0.9810
Building 0.7303 0.8435 0.8316 0.8523 0.9366

Pole 0.3274 0.4018 0.2752 0.2548 0.6179
Car 0.3512 0.6051 0.4993 0.4377 0.8392

Vegetation 0.7840 0.7975 0.7941 0.8352 0.9455
Overall acc. 0.9016 0.9413 0.9389 0.9310 0.9783

Mean IoU 0.6231 0.7225 0.6730 0.6631 0.8640

Table 6.2: Achieved results of the experiment: quality scores. Class scores are
all IoU.

The obtained results, which can be seen in Table 6.2, are really promising.
P4UCC outperforms the reference method PointNet++ for the prediction of
all the classes. It also achieves the second best general performance of all the
included algorithms, with an overall accuracy of 94.13% and a mean IoU of
76.06%, superior to the neural network approaches and only behind the deep
learning approach. Analyzing the behaviour, the algorithm performs the second
best for ground, pole and car classes, and third best for vegetation and building
class. This exposes the competitiveness of P4UCC for multiclass classification.
Figure 6.5 shows the output of the process for one of the point clouds in the
benchmark.

However, there are some flaws in the methodology. Low IoUs of 40.18%
and 60.51% have been achieved for pole and car classes due to an appreciable
amount of false positives in classes with a low amount of points. False car
predictions have been found mostly in points belonging to the ground, which
possibly indicates that the criteria to decide whether a point is ground or not
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Figure 6.5: Final result in 5D4KVPG4 cloud. Building, pole, vegetation, car
and ground are represented with red, blue, green, magenta and yellow colors,
respectively.

should be improved in the proximities of a car. False pole predictions have
been found in building points, and vice versa, which probably indicates issues
regarding the clustering process. In areas with less point density, a vertical
cluster with pole-like descriptors can be formed out of building points. The
opposite case has been observed in places with high point densities and close
proximity between the pole and a wall, resulting in a single cluster containing
the pole and the wall and considered building.

Another interesting observation comes from the achieved results of the com-
petitor methods. The two neural network approaches tend to generalize really
well one or two of the classes while giving poor results on new examples of the
remaining three. This is, for example, the case of the Method 1, which spe-
cializes in ground detection and is not quite recomendable for the detection of
poles and cars. On the contrary, Method 2 segments better buildings and trees.
In the progressive unsupervised detection presented in this chapter, the initial
segmentation of one class favours the latter detection of the remaining others,
thus gaining in regularity at the expense of the individual class accuracy. As
for the deep learning approach, it outperforms both the reference method and
all the proposals, including P4UCC, for classification of all the point categories.
However, its results for pole prediction are still prone to improvement, which
opens a question on whether a progressive pipeline of two-class deep learners
can benefit the detection of the most problematic urban objects.

6.4 Conclusions and future work

In this chapter, a novel pipeline has been developed in this work to classify five
relevant classes, ground, building, tree, car and pole, in urban vehicle-borne
LiDAR point clouds. The pipeline uses only position information and starts
by extracting the ground points, defining clusters of points with minimum local
height and calculating the inclination angle with respect to the estimated sensor
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position. Hierarchical clustering is then utilized to separate clusters of non-
ground points and local covariance descriptors computed for the identification
of cars and poles. The final step is a MLESAC-based recursive algorithm that
extracts vertical planes and determines the presence of buildings and trees from
the remaining points.

The results of a quality assessment performed over a benchmark dataset
demonstrate promising results. The proposed P4UCC pipeline outperforms the
reference method PointNet++ for urban classification and achieves better over-
all accuracy (94.13%) and mean IoU (72.25%) than other two proposed neural
networks, being the second best proposal for the benchmark data only to a deep
learning approach. The conclusion extracted from the results of the validation
process is that the main advantage of P4UCC over those methods is precisely
to progressively extract the classes with one-class detectors instead of using a
single architecture for classifying the whole cloud.

Additionally, a simple manner to heavily improve the classification results
of P4UCC is to integrate the strengths of such supervised methodologies in the
current pipeline schema. Future lines of work will look for the inclusion of new
features and models to improve each individual detector, combining the current
proposal with some of the ideas exposed in the supervised algorithms.



Chapter 7

Modelling power corridors
from LIDAR data

Nowadays, the world population has an always increasing dependence on energy.
This makes the management of power lines an issue of special importance for
power companies. Service could be interrupted due to damages caused by the
fall of objects, generally trees, over the power line. In other cases, the change
of tension suffered by a pylon due to damaged conductors can make collapse an
entire section of the line. Moreover, forest fires could start as a result of these
events, producing another kind of inconveniences on the people. That was the
case of the fires of the island of Gran Canaria in mid-August of 2019, in which
the contact of a power line with nearby trees started a fire that results in more
than 9200 hectares of pine forest and crops burned and 10000 people evacuated
from their homes.

For the power line inspection and management tasks, the use of LIDAR
technology has become very frequent. In this chapter, a new pipeline for the
classification of power structures in discrete LIDAR point clouds, as well as the
3D modelling of pylons and wires, is proposed. The chapter is divided into
two parts: an initial one who describes a methodology to find a power corridor
in a LIDAR point cloud and make an initial classification the corridor points
into wire and pylon points, which was firstly introduced in [157]; and a second
one introduced in [126] which separates the corridor points into 5 more detailed
categories: pylon, insulator strain, common conductor, shield conductor, and
chain conductor. The conductor points are segmented into single entities and
a 3D catenary model is generated for each of them. The pylon points are also
segmented into individual pylon structures and a vectorial schema is generated
from them.

Extensive testing with multiple point clouds to fit the parameters and com-
parisons against state-of-the-art techniques are also introduced in this chapter
to validate the behaviour of the proposed technique.

113
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7.1 Related work

A great amount of previous works deal with classification of power lines in
LiDAR point clouds and characterization of the lines as vector data models.
In the field of power lines, the papers focused on extraction of wire models
and classification of the corridors. Different methodologies for classification of
corridor scenes are given in works as the one of Liu et al. [188], which applied the
Hough transform on a subset of the point cloud after conducting an analysis on
skewness and kurtosis of the data. Jwa et al. [189] introduced the Voxel-based
Piecewise Line Detector method. Kim and Sohn used an RF classifier to identify
five classes of points, including wire and pylon [190], and then integrated it into
a Multiple Classifier System [191]. Liang et al. [192] looked for the orientation
of the power line and then clustered the candidate points in single lines. Ritter
and Benger[193] used eigenvectors and tensor fields to reconstruct the different
lines.

In the last five years, new proposals on classification of the corridors have
appeared. This is the case of the work of Guo et al.[194], that used a Joint Boost
classifier instead of an RF to identify the same categories. Zhu and Hyyppä [195]
introduced an algorithm which uses height data to identify low-voltage lines in
forested areas. Gu et al. [149] looked for heterogeneous features in the data
and generated kernels from them. Those kernels are then used to classify points
into 5 classes. Finally, Awrangjeb and Islam [196] defined an image mask to
extract pylon points and then analyzed the topological relation between pylon
candidates and wire lines to remove false positives. Other proposals are also
available in an extensive survey done by Matikainen et al. [197]

Other group of works are focused not only on classifying but also on ex-
tracting models of the different conductors in the scene. On this line, the work
of McLaughlin [198] takes into account elliptical neighbourhoods for each point
and proposed to segment the points relying on the computation of the matrix
of covariance of data. Then, local models for each wire are generated. Guo et
al. [199] extended their previous work [194] to extract wire models by analyzing
similarities and the distribution of points between pylons and then applying the
RANSAC technique. Cheng et al. [200] partitioned the cloud in voxels and ap-
plied the Autoclust algorithm to cluster individual conductors. Each conductor
is then modelled using a polynom. Finally, Guan et al. [201] extracted power
infrastructures from vehicle-borne points and filtered them using the Hough
transform and distance-based clustering. Models per each detected conductor
are then generated as a horizontal line and a two-dimensional catenary equation.

All the mentioned studies only consider the classification of pylons and con-
ductors without detecting any shorter elements inside of these classes. However,
there are several subtypes of pylon in the real world, like suspension and anchor
pylons, which differ in how they can manage forces and how the conductors are
attached to them. The conductors can also be split into different subcategories:
shield conductors, common phase conductors and chains. Moreover, a small
piece of the pylon called insulator strain, which allow wires to hang from the
pylon without losses of energy and it is easy to misclassify as a wire, should be
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also detected, removed from the wire model and considered into a pylon model
for inspection purposes. This is still an open problem, in which the work of
Arastounia and Lichti [202] can be highlighted. It aims to detect those insula-
tor strains, but it does detect them only on electrical substations. Instead, the
proposal explored in this chapter look for those elements along the whole power
line corridor.

7.2 Finding the power corridor

In this section, a methodology is described to accurately detect the power lines
from the LIDAR data. It started by performing a statistical analysis on the data,
in order to find patterns related to pylons and wires. Once patterns have been
found, a two-staged pipeline is proposed, with an initial stage which performs
an image-based selection of candidate areas, and a final stage which filters these
areas to remove possible false positives. The statistical analysis and both stages
of the initial pipeline are presented in detail in the following subsections.

7.2.1 Research dataset description

A dataset with 68 different point clouds have been used in this study. They
have a number of points which ranges between 1.5 and 2.5 million per cloud
and an average point density of 25.5 points per square meter. The dataset
clouds represent different sections of a power corridor placed in Spain, whose
total length is of 80 km. and its average width is of 80 m. They have been
acquired using a Riegl VUX-1LR sensor and a IMAR IMU-FSAS-NG inertial
unit, mounted in a helicopter. Scanning flights were parallel to the power line
and around 300m. over the ground, with an average speed of 40 knots. This
acquisition scheme allows to minimize the number of strips and, with a proper
calibration of the system, no appreciable overlapping errors are found between
them. Noise removal has been then applied in all the acquired point clouds.

The point data include power line points as well as points representing ter-
rain, all kinds of vegetation, buildings, roads and water masses. A hand-made
classification has been performed on the set and used as a ground-truth for
pylon/wire classification. The files have been divided into three different sets:

� Training set (20 files): Used to conduct previous analyses on the data.

� Validation set (23 files): Used as a sandbox to adjust the parameters.

� Test set (25 files): Used to conduct the experimentation and obtain the
final results.

7.2.2 Data analysis

Prior to the development of any method, it is important to analyze the available
data to find what makes all the possible elements in the point cloud different
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from each other. The focus is put on the three variables that are included in
the minimum version of LAS point clouds: height, intensity and return value.
The height value can be used in terms of distance between the point and the
underlying ground to determine where a power line could be found. Power lines
are supported by pylons with diverse shapes and heights. Most pylons for high
voltage lines have heights between 10 and 55 meters [203]. That also implies
that wires can be found at heights of at least 8 meters.

To find conclusions from the intensity of the return, maximum, minimum
and mean intensity values have been extracted from the twenty files of the
training set. The results are presented here as a resume in Table 7.1.

Terrain Vegetation Buildings Pylons Wires
Min 35 37 44 35 0
Max 5843 5843 4774 4819 4752
Mean 3070 2995 2415 2050 1370
Std 91.12 203.8 506.9 60.56 34.88

Table 7.1: Resume of intensity analysis

From the analysis of the set can be extracted that all categories present
similar minimum and maximum values, meaning that the category of a single
point cannot be inferred from its intensity information. However, mean and
standard deviation for the whole set of category points allow to make some
differentiation. Particularly, groups for power line components have lower and
less diverse returns than the rest of the categories. As an example, the ratio
of intensities between the mean for wires and the global maximum is 0.23. For
the case of pylons, the same ratio has a value of 0.34. This fact enables us to
differentiate the two categories based on the mean intensity value of the cluster.

Terrain Vegetation Buildings Pylons Wires
1 (mean) 82.66% 80.76% 75.07% 67.75% 90.73%

1 (std) 5.78 6.83 26.82 5.20 5.74
2 (mean) 14.75% 16.42% 14.13% 26.80% 8.59%

2 (std) 4.11 5.08 6.35 2.42 4.46
3 (mean) 2.22% 2.46% 2.96% 0.70% 0.69%

3 (std) 1.46 1.53 4.55 2.27 1.18
4 (mean) 0.32% 0.31% 2.96% 0.70% 0.07%

4(std) 0.26 0.25 8.88 0.80 0.17
5(mean) 0.04% 0.03% 2.90% 0.08% 0.01%

5(std) 91.12 203.8 506.9 60.56 34.88

Table 7.2: Return distributions per category in the training set. First column
expresses the return number.

The third variable, the return number, cannot be applied to single points
either. However, it is expected that in regions with more than a possible return,
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the nearest point has a minor return value. Moreover, high human-made objects
(like pylons or buildings) are expected to have a face full of first return points
and other one with more points obtained from last returns, since the LIDAR
device will be opposed only to a given side of the object. An analysis on the
distribution of returns for the training set has been performed, and a summary
can be read in Table 7.2.

From the summary it can be extracted that, for the pylon category, standard
deviations from the mean of first and second returns are lower than in the rest
of the groups. The percentage of first return points are quite low compared
with the same percentage in other categories. These facts can be used to filter
clusters of points that represent pylons.

Other remarkable fact is a high percentage of first return points in the wire
category. Combined with the information about height and intensity, this could
help identify clusters of points as wires.

7.2.3 Image-based classification

This stage proposes the generation of images in which every pixel represents a
squared prism-shaped volume with infinite height whose section side has α me-
ters length. The generated image should cover the whole point cloud regardless
of the number of points in each pixel. The goal of those images is to separately
differentiate wire and pylon areas of the electric power line from the rest of
elements in the point cloud. To do so, different measurement images should be
created from the available data, in this case, intensity and height values, and
then combined.

One of these measurement images is the minimum height, H. There, every
pixel Hij is assigned the minimum height from the points contained in the
[Xmin+(i−1)∗α+1, Xmin+ i∗α;Ymin+(j−1)∗α+1, Ymin+j ∗α] XY region
of the point cloud, from now on, its associate volume section. There, Xmin and
Ymin stands for the minimum X and Y values for the point cloud.

By using H, it is possible to compute an image of amplitude, A. Every pixel
Aij of the image is assigned the result of the Expression 7.1:

Aij =

n∑
k=1

(Zijk −Hij) (7.1)

Where Zijk stands for the height value of every point in the associated
volume of the pixel (i, j). Therefore, A is an accumulator of height differences.
In case no points are present in the volume, Hij and Aij are assigned the global
minimum height and 0, respectively. Finally, A is normalized within the range
[0, 1].

Having A, a binary image, T , can be defined to signal the presence of power
line pylons. The assignation of Tij follows the rule:

� Tij = 1, if Aij >= γ

� Tij = 0 otherwise.
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There, γ is an adjustable threshold which should be assigned in a way that
allows the detection of the maximum number of pylon points with the minimum
possible number of false positives. Experimentation was conducted and intro-
duced in Subsection 7.2.5 to find a proper value for the parameter, which was
finally assigned 0.25. An example of a T image can be seen on Figure 7.1.

Figure 7.1: Inverse T image example. Four pylons are visible in the main
diagonal, as well as two false positives located between the latest two pylons.

Other measure images are based on intensity values. Let ε be the minimum
possible height value for a wire point in relation with the ground height below
it. Considering this, a reflectivity accumulate image is defined, R, whose pixel
values are assigned using the Expression 7.2:

Rij =

n∑
k=1

(Iijk ·Qk) (7.2)

Where Iijk is the intensity value of the points in the associate volume of the
pixel, and Qk is a binary evaluation for each point whose value is given by the
following rule:

� Qk = 1, if Zijk −Hij > ε

� Qk = 0 otherwise.

Other image, N , is defined and their pixels assigned the number of points
included in their associated volumes which fulfills Qk = 1. This way, it is possi-
ble to define a mean intensity image, M , assigning their pixels as in Expression
7.3:

Mij =
Rij
Nij

(7.3)

M is then adjusted so its values range between 0 and 1. Having M , the
binary image W which signals the presence of wires surges from the rule:

� Wij = 1, if Mij < ω and Tij = 0

� Wij = 0 otherwise.
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The ω parameter is used to filter regions with low mean intensities. A
low intensity in LIDAR data implies a low reflectivity, only seen in objects as
power lines, pylons or dense vegetation areas. Considering the intensity ratios
commented in Subsection 7.2.2, it was decided to set this value to 0.3, which
is an intermediate value between the wire average (0.23) and the pylon average
(0.34), suppressing the latter. Figure 7.2 shows an example of wire images.

Figure 7.2: Inverse W image for a file of the validation set.

An initial classification of points is performed from T and W images, clas-
sifying as pylons all points whose associated pixel in T is selected, and as wires
those points whose associated pixel in W is selected and have a height difference
with the ground greater than ε.

7.2.4 Filtering selected areas

The initial classification provided by the first stage of the pipeline can include
false positives, generally due to high vegetation with similar intensity values or
placed immediately below the wire, as seen in Figure 7.3. This filtering stage
aims to remove those false selections by using the return number of the points
and their intensity.

(a) Irregular orography (b) Trees below line

Figure 7.3: Initial classification for two files of the validation set. Blue stands
for pylon and magenta for wire areas.
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The pylon case can be dispatched by checking the distribution of return
values in the candidate area. As shown in the data analysis from Section 7.2.2,
points grouped under the pylon category show a distribution of return values
with low percentages in the first return and low deviations. It could happen that
the candidate cluster contains some wire or terrain points near the pylon itself,
so the conditions should be slightly less restrictive than the ones suggested by
the analysis. We are considering a candidate area as a pylon if it fulfills all the
following criteria:

� First return points > 63% of the points.

� Second return points between 19% and 30%

� Third return points between 2% and 6.5%

� Mean intensity value below 2200

The wire case has a special issue to take into account: there could be false
positive points in correctly classified areas due to high vegetation or objects
just below the wire itself. Each cluster extracted by using the algorithm is then
evaluated, confirming them as a wire if their intensity mean values remain below
2000, and removing it otherwise. All intensity thresholds during this stage have
been set according to the initial analysis of data.

In order to obtain the pylon and wire clusters for such analysis, two strategies
have been used. The first one involves an agglomerative clustering algorithm
[123]. The algorithm will join pairs of points or clusters step by step, choosing
each time the closest pair based on a given distance, and stops when all possible
distances between pairs are over a given cutoff. For this case, Euclidean distance
between the positions of the points is used with a cutoff of 6. It is wide enough
to differentiate wire clusters from possible vegetation areas near them, as it
could be seen in the example of Figure 7.4.

Figure 7.4: Agglomerative clustering applied to different wire candidate areas.
Each cluster is represented with a different color. Subfigures in center and
right include clusters with some small vegetation areas below the wires to be
discarded.

The second one is the generation of three-dimensional alpha shapes from
the point sets. This technique were introduced in 1994 by Edelsbrunner and
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Mücke [204] as a 3D extension of the alpha shape [124], which on its part is a
generalization of the convex hull. A point p1 belongs to a given alpha shape
when it is possible to have an sphere of radius alpha, from which p1 is placed
in its boundary, and another point p2 of the shape is also in its boundary. This
could be used to achieve similar groupings as in the agglomerative algorithm by
using an alpha value of 6, without the needs of a massive distance matrix and
ensuring an execution time of O(n2) for the worst possible case. However, this
technique does not create clusters of size 1 so some points may not be considered
during the process. This is critical since a wire is a line of individual points
and we should consider all wire points. An experiment has been conducted to
determine, based on the final results and the execution time, which one of the
filtering techniques is most convenient for this stage.

7.2.5 Tuning and validating the corridor detection pipeline

In this section, several experiments are introduced to find the best configuration
possible for the generation of images and validate the behavior of the method
on a set with several different point clouds. A manual classification of the files
is used as ground truth to compare.

All the experiments have been conducted in Matlab 2015b over a MacOS
environment. From the four parameters given in the method, the same values
have been provided in every experiment for the following three: α = 1, ε = 8,
ω = 0.3.

Four quality measurements have been explored throughout the experiments
in order to assess the behaviour of the pipeline: recall, precision, F1 score and
IoU score. The formula to compute each one of the scores is introduced in
Annex I.

Adjust of the γ parameter

As it has been already commented in the subsection Image-based classification,
the generation of the binary image T for the selection of pylon candidate areas
relies on a parameter, γ, which ranges between 0 and 1. It is necessary to find
a value of γ that allows the classification of the maximum number of pylon
points without generating a huge number of false positives to be corrected in
the second stage.

γ Total Ok FN FP Recall Prec. F1 IoU
0.15 266368 255223 11615 205067 0.956 0.554 0.702 0.541
0.20 266368 252065 14773 100289 0.945 0.715 0.814 0.687
0.25 266368 249377 17471 66929 0.935 0.788 0.855 0.747
0.30 266368 245111 21727 52528 0.919 0.824 0.868 0.767
0.35 266368 241838 25003 45471 0.906 0.842 0.873 0.774

Table 7.3: Results for pylon classification, using only the T image, over the
validation set with different γ values.
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An initial experiment was designed to tune this parameter in which the first
stage of the algorithm is run with different values of the parameter γ over all
the point clouds in the validation set. Comparisons with the ground truth are
made to determine the evolution of the completeness and the correctness of the
predictions. The results can be found on Table 7.3.

From those results can be extracted that the use of low values of γ generates
great amounts of false positives, although it also classifies the majority of pylon
points. By increasing the value, the precision rises drastically at expenses of a
linear fall in the recall. The F1 and IoU indicators, that consider both recall
and precision values, have an exponential fall for 0.15 and 0.20 values, and
slightly increasing values for γ = 0.25 and higher, which suggests rising the
γ value for a better interclass prediction. However, a good precision score is
also necessary, as we should avoid not detecting the presence a pylon. As a
compromise between both facts, γ = 0.25 fits well, fulfilling the goals of classify
as much points as possible while controlling the false positives in classification
and thus the execution time of the second stage.

Selecting the filtering method: accuracy results

Once the γ factor is set, the next step is to run the whole pipeline over the
validation and test sets, considering the fact that there are two possible filter-
ing algorithms to choose. This means that two runs per set have been done.
The idea of this experiment is to analyse the behaviour of the methodology
and choose a filtering option, comparing their completeness, correctness and
execution time results.

Figures 7.5 and 7.6 show the results of execution times using the agglomera-
tive and α-shape filtering methods on pylon and wire groups, showing that there
are important differences between them. For all point clouds in the datasets,
the α-shape filtering method is faster than the agglomerative clustering. More-
over, the agglomerative clustering execution times rise exponentially with the
amount of points, whereas the execution times of α-shape filtering increase in a
linear manner.

Class Total TP FN FP Rec. Prec. F1 IoU
Pylon 266838 249367 17471 49735 0.935 0.834 0.881 0.788
Pylon 266838 249367 17471 49735 0.935 0.834 0.881 0.788
Wire 1695303 1651047 44256 11506 0.974 0.993 0.983 0.967
Wire 1695303 1650792 44511 11396 0.974 0.993 0.983 0.967

Power 1962141 1950026 12115 11623 0.994 0.994 0.994 0.988
Power 1962141 1949769 12372 11521 0.994 0.994 0.994 0.988

Table 7.4: Results of the execution of the method over the test set, using α-shape
(light grey) and agglomerative (dark grey) filtering stages, over the validation
set. Rec. and Prec. stands for recall and precision.

The quality results, which can be read in Tables 7.4 and 7.5, show that the
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Figure 7.5: Execution time curves of the filtering algorithms for wire points,
generated using all point clouds in the validation and test sets

Figure 7.6: Execution time curves of the filtering algorithms for pylon points.

differences of using α-shape or agglomerative clustering to classify wire points in
a point cloud are almost inappreciable: the variation on the true positive results
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is of 300 wire points out of more than 1.6 million. Still, the best technique
for wire filtering is α-shape. For pylon classification, the filtering algorithms
perform equally for all point clouds in the set.

Class Total TP FN FP Rec. Prec. F1 IoU
Pylon 262598 241963 20634 60135 0.921 0.801 0.857 0.750
Pylon 262598 241963 20634 60135 0.921 0.801 0.857 0.750
Wire 1652284 1610351 41924 16367 0.975 0.990 0.982 0.965
Wire 1652284 1609945 42339 16588 0.974 0.990 0.982 0.965

Power 1914882 1902540 12351 26295 0.994 0.986 0.990 0.980
Power 1914882 1902096 12785 26535 0.993 0.986 0.990 0.980

Table 7.5: Results of the execution of the method over the test set, using α-
shape (light grey) and agglomerative (dark grey) filtering stages, over the test
set.

Figure 7.7: Final result of the classification process for a file of the test set.

Considering now the α-shape method as our filtering technique, it is possi-
ble to discuss the overall behavior of the methodology. It generates promising
results, with completeness rates of 97.46% while classifying wires and 92.14%
for pylon classification. According with these results, the method seems to be
competitive compared with the reported results of other works: 97% and 92%
respectively in the work of Kim and Sohn [190], 96.5% for wires from the work of
Liang et al. [192] or 98,3% for wires from the work of Jwa et al. [189]. However,
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it is impossible to ensure it without a direct comparison of all the methods over
the same point clouds. A final result for a given point cloud of the test result
can be shown in Figure 7.7.

On the other hand, there is still an appreciable number of false positives on
pylon classification, of around 0.14% of the total size of the set, which affects
the quality of the prediction. A smaller but also appreciable number of false
negatives is also found in wire prediction. An unavoidable question comes: Do
the wire false negatives and the pylon false positives match? Considering both
power corridor categories as a single unit, called Power in the quality result
tables, it is possible to see an answer: The number of Power false negatives
diminished to be lower than those of the both subclasses all together, and the
number of their false positives is also lower than those of the Pylon class alone.
Only a number of FP of 0.06% of the set size remains, which confirms much
of the wrongly classified points in both wire and pylon groups belong to the
other group. Fortunately, this is an issue that can be corrected during the
characterization of the corridor elements. This is explained in the next section.

7.3 Characterizing the corridor elements

This second section of the chapter defines some terminology related to the power
corridor maintenance tasks and presents the methodology followed to refine the
classification of the power corridor. This methodology uses six additional steps
for reclassifying the initially detected corridor points into five, more complex cat-
egories: insulator strain, pylon, common wire, shield wire and chain. All conduc-
tor points are segmented into individual units so a three-dimensional catenary
model is computed and saved for each of them. From pylons, a skeleton-like
model is also generated from the classification. Finally, more experimentation
are also introduced to assess the behaviour of the new pipeline, involving py-
lon/wire classification, insulator strain detection and 3D catenary model error.

7.3.1 About the different components of a power corridor

It is well known that a power corridor consists of series of two main elements:
pylons and wires. However, there are several subcategories of each one of these
elements. The ending points of a single wire are also different in relation with
the type of pylon it is attached to.

Regarding the pylons, there are several types of them, from which two are
widely used: suspension pylons and anchor pylons. Suspension pylons are towers
in which the conductors are just hanging. Mechanical tension is expected to be
the same in both sides of the suspension pylons, so only lateral and downward
forces affect the structure. They are used whenever a corridor goes straight,
without significant changes in its direction. Anchor pylons, also called dead-
end or tension pylons, are self-supporting towers. Their structure can manage
changes in the mechanical tension without collapsing, so they are particularly
useful when the direction of the corridor should change. They are also present
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Figure 7.8: Components of a power corridor in which different pylon types are
present.

from section to section, ensuring the infrastructure resists even if a conductor
breaks. However, they are heavier, require more material and have a higher
cost, so lines are generally not composed of only anchor pylons.

Figure 7.8 shows a representation of a power line corridor with suspension
and anchor pylons. In suspension pylons, wires hang from insulator strains
that are tied to the pylon. This way, losses of energy from the wire to the pylon
are avoided. This should be taken into account at the moment of modeling
the wire, since the insulator strains are not part of the wire and can affect the
generated model. For the case of anchor pylons, conductors are not hung but
tied to the pylon. The final part of the wire includes insulation. To connect two
consecutive power lines, small conductors called chains, also named bridges,
are used, as shown in Figure 7.8. As chains are individual conductors, it is
interesting to differentiate them and generate their models.

Regarding the wires, there is also a special type that should be taken into
account: the shield wire, also called ground wire or guide wire. Shield wires are
earthed and placed at the top of the structure, and their goal is to reduce the
likelihood of lightning strikes to the conductors in case of storms.
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7.3.2 Architecture of the proposed solution

A sevenfold staged pipeline is proposed to perform the following tasks on a point
cloud:

7: 3D Modelling

3: Guide / common
conductor tagging 4: Insulator

identification

5: Guide endings
identification

6: Chain
identification

1: Initial
Classification

2: Splitting

Classified points

Input point cloud

Ordered
pylon
volumes

Ordered
wire

volumes

Output
point cloud

Reclassified
wire

volumes

Tags, 2D
ecuations

and rotation
angles

Classified
point cloud

Catenary
models

Pylon
models

Figure 7.9: Stages of the proposed pipeline.

� Classification of power line points (pylon and wire).

� Proper identification of the insulators, the chains and the shield wires in
the corridor.

� 3D-modeling of the individual conductors of all classes.
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For this architecture, a diagram is shown in Figure 7.9. The first of the seven
steps is an initial classification of the points. This can come from the previously
proposed image-based procedure or from any other source. Stages from 2 to
7, which are explained in detail in the following subsections, include splitting,
wire tagging and identification of shield wires, identification of insulator strains,
identification of the endings of shield wires, identification of chains and model
fitting.

This method will assume the following conditions to work:

� The point cloud is acquired by a helicopter flight, following the power
corridor. This allows to acquire the majority of the power corridor in a
single strip.

� The point density should be of at least 10 points per m2. Moreover, it
is recommended to have a point density of more than 25 points per m2.
This is due to the need of segmenting not only the main conductors, but
also the insulator strains and the chains.

� The sharpest turning angle allowed between two pylons is of 90◦. In case
the corridor has sharper turns, the point cloud could be split in two before
processing it, using one of the pylons as cutting limit to overcome the issue.

� Atmospheric and timeout related noise have been removed from the point
cloud.

7.3.3 Stage 2: Splitting and ordering the corridor

Figure 7.10: A representation of the pylon volumes (blue) and wire volumes
(red) for a cloud with 2.1 million points. Pylon centers are depicted as blue
dots inside each pylon volume.

This stage looks for providing ordered pylon and wire volumes. It starts by
grouping all pylons points so each group correspond to a unique pylon. For this
work, three-dimensional α-shapes with α = 4 ensure the desired grouping, but
any other grouping algorithm is also valid as well as it achieves the described
effect. For every single pylon group, its center is calculated, and the bounding
box containing the points of each pylon is generated with an X,Y margin of
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value s. The volume should cover the whole pylon group as well as the wires
near the pylon. The pylon groups are then ordered in the direction of the longest
dimension of the point cloud.

Volumes enclosing all wire points between two consecutive pylon volumes
are also generated: those will be the wire volumes. Figure 7.10 shows a repre-
sentation of the splitting stage results.

7.3.4 Stage 3: Shield and common wire segmentation

This stage takes the wire volumes and the pylon centers from the previous stage.
For every wire volume, its adjacent pylon centers, Cp1 and Cp2 are taken. The
directional angle of the volume in relation with the Y axis, θ, is calculated by
using the Expression 7.4:

θ = − arctan

(
cyp2 − c

y
p1

cxp2 − cxp1

)
(7.4)

An agglomerative clustering algorithm is applied to split the points of each
volume into different wire units, not only the ones going from the two pylons, but
also any wire that has a different direction and crosses the power line below its
wires. Clustering will consider XYZ values and will use standardized Euclidean
distance. This is a variant of the Euclidean distance in which the coordinate
differences between two points are scaled using the standard deviation of the
coordinate. This coordinate standard deviation is computed considering all the
observations. A cutoff ω1 is set as a threshold to stop the clustering process. It
is related to the distance and should be set so it can isolate the different wires
without fragmenting them. For every cluster obtained, its own rotation angle
θi is computed. We will select clusters which fulfill the Expression 7.5:

|θ − θi| < ε1 (7.5)

in which ε1 is set experimentally. From those selected clusters we will con-
sider the equation of the line which best fits the X,Y position of their points
and their minimum height, min(Zi). Every non-wire-classified point in a wire
volume whose X,Y position is well predicted by the straight line equation of
one of the wires and whose height is higher than min(Zi) is reclassified as wire.
This step is introduced to improve possible issues in the initial classification.

After that, the clustering process is reapplied in the same conditions for
the selected clusters and the reclassified points. The goal is to regenerate the
groups by joining clusters that initially are split due to misclassification of some
sections of the wire. The result of this operation can be seen on Figure 7.11.
All the resulting clusters are assigned a unique, numerical tag. Finally, it is
determined which of the clusters correspond to shield wires. As the different
groups of wires can be found at similar heights and the shield wires are always at
the top, a height-based grouping of the clusters is conducted, applying a cutoff
ω2 to properly separate the wires by levels. The highest group of clusters will
be considered shield wires.
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Figure 7.11: Results of the segmentation and tagging stage for a wire volume.
Left image shows identified wire points in the main direction (red), crossing
wires (dark blue) and non-wire points in the volume (light blue). At the right,
main wires are segmented into individual conductors.

7.3.5 Stage 4: Insulator strain identification

This stage takes the pylon volumes from Stage 2 and the segmented conductors
from Stage 3. For every point Pi in each pylon volume, its n nearest neighbours
in the pylon volume, Nij , are found, with n set experimentally. Index i will refer
to the point and j to the neighbor. For each neighbor, the euclidean distance
to the point, dij , is computed. The difference vector, Vij = Pi − Nij , is also
computed. V and d are used to calculate a distance ratio, R, for every axis, as
seen in Expression 7.6 :

Rxij = V xij/dij (7.6)

Ryij = V yij/dij

Rzij = V zij/dij

Once the ratios are calculated for all the neighbors of the point, their means
are computed and a verticality test for each point is run as in Expression 7.7:

mean(Rxij)

max(α1,mean(Rzij))
+

mean(Ryij)

max(α1,mean(Rzij))
< ε2 (7.7)

The test is meant to find clusters in which all the neighbors are at the same
planimetric position and, thus, correspond to a vertical cluster of points. For
this particular case, mean(Rxij) and mean(Ryij) tend to zero. Values for α1 and
ε2 are determined experimentally.

In suspension pylons, it is expected that some non-vertical points in the
pylon volume will be found separated from the arms of the pylon and their X,Y
positions should be predicted by the 2D equations of the conductors obtained
in Stage 3: those will be the points at the end of conductors. To obtain such
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points, agglomerative, standardized XYZ -distance-based clustering is applied
to non-vertical points. A cutoff ω3 is used so these points at the end of a wire
are grouped apart from the main part of the pylon. Groups are considered to
contain wires when more than 95% of their 2D positions can be predicted by
a 2D conductor equation. For those groups, the point with maximum height
is saved as ending point for catenary modeling. Points at both sides of the
maximum are tagged with the id of the closest conductor.

If at least four wire groups are found near each pylon, the presence of insula-
tors is considered. Those will be points that passed the previous verticality test
and are placed in a square area of side length l, centered in the highest points
of each group. They also must have a z value greater than the highest point
of the group, P z, but not higher than P z + h. l and h are set experimentally.
Otherwise, no points in the pylon volume will be classified as insulator. An
example of the results of this stage is shown in Figure 7.12.

(a) Common wire endings (red). (b) Detected insulator strains (blue).

Figure 7.12: Results of the stage 4 for pylon volumes of a sample point cloud.

7.3.6 Stage 5: Identification of shield wire endings

This stage takes the pylon volumes and the shield conductor 2D equations from
previous stages. Every pylon point whose X,Y position is predictable by a
2D equation with a tolerance of α2 will be selected as shield wire candidate.
Selected points will not only include the endings of shield wires, but also lower
points belonging to the arms of the pylon. To differentiate the shield ending
points, the closest wire point is found for each selected pylon point. If the closest
wire point tag matches with a shield conductor tag, the pylon point is confirmed
as belonging to the conductor, so it is reclassified and assigned the same tag.
Otherwise, the point will continue being part of the pylon.

Finally, from all the points in the pylon volume selected as shield points, we
take the maximum height per assigned tag and save its corresponding point as
ending point for catenary modeling. A result of the stage for a sample point
cloud is shown in Figure 7.13.
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Figure 7.13: Results of the stage 5 (Identification of shield endings) for pylon
volumes of a sample point cloud. Points identified as endings of a shield wire
are shown in red.

7.3.7 Stage 6: Identification of chains

Chains are expected to be found only in anchor pylons. At this stage of the
process, it is possible to consider as anchor pylon any pylon in which insulator
strain points have not been identified.

Figure 7.14: Classification of chain points (in red) as points whose height is
lower than the one predicted by the 3D line equations (in light blue).
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For those particular pylons, we select every point whose X,Y position can
be predicted with a 2D equation of a common conductor with a tolerance of α3.
The points selected by this method can also include small points from pylon
arms. To suppress false positives, agglomerative clustering is performed, using
X,Y,Z positions and a cutoff ω4, so different groups of points are obtained.
Every cluster which includes less than s2 points is discarded as candidate. A
second grouping is then made for the non-discarded groups based only on the
maximum height, with a cutoff ω5 set experimentally so all clusters representing
wires which are tied to the same arm are grouped together. The minimum of
the maximum heights of every arm group is selected as maximum acceptable
height for all the clusters in the group. Points over that height are discarded
and remain classified as pylon points.

Finally, for each candidate cluster of points, the 3D euclidean distance be-
tween the points and the pylon are computed and the furthest points are taken,
as well as the point with maximum height, which is the closest one. The be-
havior of the catenary in the proximities of the pylon can be approximated as a
3D-line, so 3D line equations are calculated between the furthest points of the
cluster and the closest. All points whose position is predicted by such equations
with a tolerance of α4 are considered belonging to the closest conductor and
tagged with its id. Points not predicted by the equations due to being below
its theoretical height are classified as a single chain and tagged with its unique
identifier. This is best visible in Figure 7.14.

7.3.8 Stage 7: 3D modeling of components

Once the classification stages are finished, it is possible to generate individual
models of each corridor element. For the wire elements (shield, common and
chain conductors), a 3D-wise catenary curve model is chosen. For the pylon, a
vector data based model of the pylon skeleton is generated from the data. Both
can be seen in detail in the following subsections.

Catenaries

The catenary is the ideal curve which represents the behavior of a wire which
is suspended from its two endings. Its equation was first expressed by Huygens
in 1691 and can be written as in Expression 7.8:

v − v0 = a · cosh

(
u− u0
a

)
(7.8)

where a is the main catenary parameter and equals the horizontal tension in
the wire endings, divided by the weight per length unit. u0 is the u coordinate
of the ideal lowest point in the curve, P1, and v0 can be defined as v1−a, being
v1 the coordinate v of P1. This is best shown in Figure 7.15. Hence, the curve
equation could also be expressed as in Expression 7.9. Neither a nor (u1, v1)
are known, so a multivariable optimization should be used to find the values of
those parameters which best fit the input data. To accelerate the computations,
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Figure 7.15: Elements on the catenary expression for 2 and 3 dimensions.

the lowest LiDAR point coordinates can be provided as starting (u1, v1) in the
optimization process.

v − v1 = a ·
(

cosh

(
u− u1
a

− 1

))
(7.9)

The input of this stage is composed of all the points of a conductor, includ-
ing the endings, P2 and P3 and the rotation angle θi that was found for that
conductor in the previous stages. The points are projected to a planar (u,v)
space, reducing the dimensionality of the problem, in an analogous manner to
the one seen in Chan et al. [205]. After that, we performed the above-mentioned
optimization process to find the a, u1 and v1 values for the model which mini-
mize the sum of squares of the residuals (SSR). For this minimization task, the
Particle Swarm Optimization method [206] was applied. The SSR optimization
function is defined considering all points in the conductor as in Expression 7.10:

SSR =

n∑
i=1

(P zi − vi)2 (7.10)

with n the number of points in the conductor, P zi the actual height of the
point and vi the result of computing the Expression 7.11:

vi = v1 + a ·
(

cosh

(
ui − u1

a
− 1

))
(7.11)

This results in a pair a - P1 for the final model. At this point, the P2 and P3

input points for the endings of the catenary are checked. If the error between
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those points and the adjusted curve is lower than 3 standard deviations from the
general Root of Mean Squared Error (RMSE) of the curve, they remained the
same. Otherwise, they will be considered outliers. This could happen when a
pylon point is misclassified as being part of the wire. For that case, the closest
non-outlier point will become the new ending of the curve, substituting the
erroneous one. Then, a final three-dimensional expression of the catenary curve
can be expressed as follows in Expression 7.12:

x = x2 + t · (x3 − x2) (7.12)

y = y2 + t · (y3 − y2)

z = z2 + v0 + a · cosh

(
t · d− u0

a

)
Where t ranges in [0, 1], [x2,y2,z2] and [x3,y3,x3] are the 3D coordinates of

the points P2 and P3; [x1, y1, z1] the 3D position of the P1 point; and u0, d and
v0 are respectively the result of Expressions 7.13, 7.14 and 7.15. As an output
of the stage, a structure containing the basic elements of the model, a, P1, P2

and P3, is generated for each conductor.

u0 =
√

(x1 − x2)2 + (y1 − y2)2 (7.13)

d =
√

(x3 − x2)2 + (y3 − y2)2 (7.14)

v0 = v1 − a = z1 − z2 − a; (7.15)

Pylons

Generating a unique algorithm to extract a perfect 3D model out of any high
voltage pylon is a hard task. There are no standards or rules on how a power
pylon should be, but only on what specifications should match. These specifi-
cations are related to number of conductors, the tensions and forces the pylon
should resist and possible height restrictions in the area. As well as they are
satisfied, pylon makers can design freely their towers. However, all the different
designs have common elements: a central mast and different arms to support
the conductors. This fact allows to design a vector data based model which
represents the pylon as a skeleton, which can be used not only for progressive
streaming but also for inspection and maintenance purposes. A vector pylon
model is defined as:

� A vertical line segment that represents the main pole.

� A variable number of parallel horizontal line segments that represent the
pylon arms.

� A variable number of points that represents the union points between the
conductors and the pylon.
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As most of points in a pylon are distributed in the main pole, and most of
who are not are at least symmetrically distributed around it, as it could be seen
in Figure 7.16, the pole segment can be easily generated. Considering T to be
a pylon point set, it is represented as the pair [mean(Tx),mean(Ty),min(Tz)] ,
[mean(Tx),mean(Ty),max(Tz)].

Figure 7.16: Pole and arm segments of the vector model (red) superposed over
a pylon point set (black). Selected ending points of arm segments can also be
seen marked (green).

Determining the number of pylon arms is a problem which can be solved
the same manner as in the shield wire detection problem in Stage 3. The set of
catenary endings belonging to the pylon are clustered according to their heights.
This results in small groups, G, of few conductors which give information about
the number of pylon arms and their arm heights Hi, that will be the maximum
heights in each cluster i of catenaries.

The segments representing each arm should then be computed. For that,
a subset Ai of T is extracted for each arm, considering all points in T whose
height is in the range [Hi − δ,Hi + δ]. δ is set as the maximum between 1 and
the amplitude of heights in each cluster. Ai is denoised using the algorithm
described in Rusu et al. [207] and then, a principal component analysis (PCA)
[208] is performed over the remaining points using only their X,Y coordinates.
A directional axis is obtained as a result. Finally, all points in Ai and Gi are then
projected to the axis and their distances with respect to the pole are calculated.
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The two points whose distances are the largest will be considered the limits of
the arm segment. This can also be seen in Figure 7.16.

The resulting segments are not perfectly aligned due to differences between
the acquired points. To make them align, the directional angle of each arm is
computed as in Expression 7.16, where s1 and s2 are the segment ends:

θ = arctan2

(
sy2 − s

y
1

sx2 − sx1

)
(7.16)

The mean of all the angles are also computed. For all arm angles differing
less than 15 degrees from the mean, their segments are rotated the difference
between the angle and the mean with respect to the vertical axis for alignment.
Some pylons have special cases in which there are unaligned arms, as in line
intersections. Those special arms are not taken into account for the mean and
the alignment process. Instead, their segments are included as is in the model.
Finally, all the catenary ending points are included as is in the final model. This
final step is not really needed for streaming purposes (as they are included in
the wire model), but they are necessary for inspection and management tasks
in which the pylon model is also useful.

Incidence analysis

By using the points not classified in a power-related category and the generated
catenary models, an analysis of possible risks and incidences in the corridor area
can also be performed. For each modelled wire, the incidence analysis process
looks for points that could collide if the wire rotates with respect of its resting
position, e.g. because of a wind gust.

Four sequential tests are designed to check for incidences. Each new test
receives as input only the points that passed the precedent tests. Let it be α
the maximum expected rotation angle of the wire with respect to their resting
position. Let also be dmax and hmodel the minimum distance allowed between
the wire and other objects and the minimum height of a given point on the wire,
respectively. A given point I is an incidence if all the conditions are sequentially
fulfilled:

1. Height condition: hI > (hmodel − dmax)

2. Segment condition: Considering AI the projection of I on the catenary
axis, it falls inside the axis segment formed by the catenary endings, A
and B. A graphical explanation is provided in Figure 7.17.

3. Angle condition: β <= α, where β is the angle between the vertical and
the segment formed by I and AI.

4. Distance condition. Let it be I ′ the result of rotating I by an angle −β
over the catenary axis. I ′ will be in the vertical of AI, as well as a point
p in the model. The height difference dI between I ′ and p is computed. I
becomes an incidence point if dI < dmax.
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Figure 7.17: Tests of segment and angle for the incidence candidate point, I.
Its projection AI on the catenary axis is calculated to determine whether it is
in the wire area. The angle of I with respect to the vertical is also calculated
to check if the wire movement upwards can reach the point position or not.

7.3.9 Validation of the pipeline

In this section, several tests to find the best possible configuration for the
pipeline and validate its behaviour are introduced. A comparison between the
pipeline and a reference method is also conducted, and a brief description of
the point cloud datasets in which the tests have been done are included. All
the experimentation have been conducted in Matlab 2015b over a Macbook Pro
2016 machine.

Tthe validation and test datasets described in the first part of the chapter
(Section 7.2.1) have been used. A sample of those datasets is available for the
public to download in the project website 1. In order to validate the identifica-
tion of insulator, shield and chain subclasses, a careful, hand-made identification
of clusters representing each wire and insulator was done and given to us along
with the datasets. This methodology is similar to the one exposed in the works
of Guo et al. [199] and Cheng et al.[200]. The wire identification was done using
industry standards, where a single conductor cluster can be composed of one,
two or four wires, tied together with staple-like pieces.

Additionally, the dataset 1 described in the work of Gu et al. [149] and
already introduced in Chapter 5 has been used to provide a comparison be-
tween the here proposed method and their method. The dataset, as well as the
implementation of their method, is available in [161].

1http://www.ctim.es/demo113
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Adjustments of the pipeline parameters

The proposed method includes some cutoffs, tolerances, thresholds and other pa-
rameters that have been experimentally adjusted over the validation dataset to
maximize the point classification recall and improve the modeling performance.
This adjustment stage was performed by running mono-objective optimization
over each one of the parameters.

Par. Range Step Value Par. Range Step Value
s(2) 2-20 1 15 (m) l (4) 1-3 0.5 2 (m)
ε1(3) 0.05-0.25 0.025 0.1 (◦) h (4) 1-5 0.5 4 (m)
ω1(3) 0.05-0.25 0.025 0.125 α2(5) 0.125-1.5 0.125 0.25 (m)
ω2(3) 2-10 1 5 (m) s2(6) 10-200 10 50
n (4) 2-16 1 6 ω4(4) 0.1-0.5 0.1 0.4
ω3(4) 0.01-0.1 0.005 0.025 ω5(4) 2-10 1 5 (m)
α1(4) - - 0.001 (m) α3(4) 0.125-1.5 0.125 1 (m)
ε2(4) 1-2 0.1 1.7 α4(4) 0.125-1.5 0.125 0.75 (m)

Table 7.6: Resume of the parameter settings of the pipeline.

In Table 7.6, the range of variability of all the parameters during the exper-
iment and the final value which gives the best results are presented. Those best
results for the validation set are also given in the next subsections.

Pylon-Wire classification assessment

To obtain results related to point classification, the proposed pipeline has been
run over the test set. Those results, which can be seen in Table 7.7, are promis-
ing. An average recall of 94.90% and precision of 90.77% have been obtained
for pylon classification. For wire classification, the average recall is of 99.58%
and the precision is of 99.44%.

Test Validation
Pylon Wire Other Pylon Wire Other

Pylon 249204 2821 22553 256846 4183 10396
Wire 5461 1645395 3872 2792 1687270 1227
Other 7932 4058 42104576 7200 3850 43527832
Recall 0.9490 0.9958 0.9994 0.9626 0.9953 0.9997
Precision 0.9077 0.9944 0.9997 0.9463 0.9976 0.9997
F1 score 0.9279 0.9951 0.9995 0.9544 0.9964 0.9997
IoU score 0.8654 0.9902 0.9991 0.9127 0.9929 0.9995

Table 7.7: Confusion matrix and classification results. Pylon class includes
insulator subclass. Wire class includes shield wire, common wire and chain
subclasses. All other classes are grouped in Other.

The test was also run over the dataset 1 from Gu et al. [149] using the
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pipeline and their MKSRC implementation to compare the behaviour of the
methods. It was chosen because the Matlab code of MKSRC was made available
for the community. The dataset has a density of 13 points per square meter,
which is lower than in the test set, and has no pylon points, but it is still good
for validation of power line classification. Table 7.8 resumes the results for both
methods in that dataset.

Gu et al. Proposed
Wire Other Wire Other

Wire 1475 424 1461 22
Other 20 99829 34 100231
Exec. time (s) 2628.7 1.4
Recall 0.9866 0.9958 0.9773 0.9998
Precision 0.7767 0.9998 0.9852 0.9997
F1 score 0.8692 0.9978 0.9812 0.9997
IoU score 0.7686 0.9956 0.9631 0.9994

Table 7.8: Confusion matrix and classification results per method, using the
dataset 1 of Gu et al.

Figure 7.18: Wire classification (purple) for the dataset 1, using Gu et al. (left)
and the proposed method(right).

In the dataset 1 scenario, the results show that the presented method is much
more precise in power line classification, at expenses of a slightly worse recall.
The F1 and IoU scores are superior for the methodology here presented in both
classes, and it is also significantly more efficient in execution time. Image 7.18
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shows the differences between both methods. The kernel-based method from
Gu et al. seems to misclassify the surface below the powerline as wire, where
the proposed pipeline prevents that from happening.

Subclasses identification and catenary fitting assessment

The objective of the work described in this chapter is not only classification
but also proper identification of the described subclasses of pylon and wire
and modeling of the different power lines. After running the experiment on
pylon/wire classification, a study covering the correctness of insulator, shield
catenaries, chain catenaries and common catenaries identification is conducted.
Furthermore, how the predicted catenary curve fits to its corresponding point
cluster is also analysed.

The results for the insulator subclass can be seen in Table 7.9. There, an
insulator is considered to be correctly detected when more than a half of its
corresponding points are correctly classified, and partially detected when some
points but less than a half of the total are classified.

Insulators Validation set Test set
Expected 501 493
Correctly detected 409 (97.80%) 474 (96.15%)
Partially detected 1 (0.20%) 2 (0.42%)
Undetected 10(2.00%) 17 (16.97%)

Table 7.9: Insulator subclass identification results.

Figure 7.19: Point clusters representing different detected catenaries in a point
cloud of the test set.

The results reflect that up to 96.15% of the insulator pieces present in the
test set are identified properly by the proposed method. However, some of
the pieces are not detected due to low local spatial resolution of the insulator
points, or misclassification of the points belonging to the wire which hangs
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from the piece. Upcoming research work can determine whether the insulator
identification ratio uprises with the point density or not.

An analogous analysis can be done for shield, chain and common catenar-
ies. To determine the correctness of the catenary its associated clusters are
considered, as the ones shown in Figure 7.19. If a cluster covers a complete
wire between two pylons and only that wire, the catenary is considered correctly
detected, and partially detected if only covers a section. When the cluster in-
cludes points of more than one wire, then it is considered over detected. Finally,
a catenary is split when its associated points are divided into several clusters.
Undetected is reserved to cases where no points are found for the expected cat-
egory or are entirely misclassified, e.g. a chain catenary identified as common.

Shield Common Chain Totals
V T V T V T V T

Expected 152 154 456 462 36 36 644 652
Correct
(%)

142
93.4

143
92.9

439
96.3

434
93.9

18
50.0

35
97.2

599
93.0

612
93.9

Partial
(%)

9
5.9

7
4.5

12
2.6

19
4.1

18
50.0

0
39
6.1

26
4.0

Split
(%)

0
1

0.7
0 0 0 0 0

1
0.2

Over-detected
(%)

1
0.7

1
0.7

5
1.1

3
0.7

0 0
6

0.9
4

0.6
Undetermined
(%)

0
2

1.3
0

6
1.3

0
1

2.8
0

9
1.4

RMSE 8.0 7.3 22.8 23.1 25.5 24.1 19.3 19.4
RMSE XY 6.9 5.9 21.9 21.9 19.8 20.4 18.2 18.0
RMSE Z 2.7 3.0 3.6 3.9 10.0 7.6 3.5 3.9

Table 7.10: Catenary subclasses detection results. RMSE values are expressed
in centimeters. V and T stands for validation and test datasets.

The results per category are given in Table 7.10. RMSE measures between
the point and the adjusted curve (internal precision) are used for validating the
fitting. They are based on the euclidean distance which is orthogonal to the
curve. Those error measures are computed only for well detected catenaries.

The results reflect that a 93.87% of the total of catenaries are properly
detected in the test set. Although a direct comparison cannot be established,
the method seems again to be competitive compared with the results reported in
the work of Guo et al. [199], offering a higher recall and less cases of undetection
and splitting.

Going to a subcategory detail, the recall is slightly worse for shield catenaries
(92.86%) and slightly better for common catenaries (93.94%). For chain cate-
naries, the recall for the test set is the highest (97.22%), but it is also noteworthy
an appreciable behaviour difference when the validation set is used, where a half
of the chains are only partially detected.



7.3. CHARACTERIZING THE CORRIDOR ELEMENTS 143

Figure 7.20: Curves representing the estimated shield catenaries (red), common
catenaries (green) and chain catenaries (purple).

In relation to the fitting of the computed 3D curve equation to the points, the
results show an average RMSE of 19.4 cm. This is worse than the 5.5 centimeters
reported as a result in the previous work of Guo et al., but still competitive
considering the future application of this work, which is the detection of objects
which could collide with the power line. An image representing the generated
tridimensional curves for a set is shown in Figure 7.20.

Figure 7.21: Adjust of a section of a catenary model (black) to input data
(green).

Focusing into a subcategory detail, the average RMSE for fitting of shield
catenaries is of 7.3 cm., while common and chain catenary have worse errors,
23.1 and 24.1 cm. There are also significant differences between the error with
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respect to the XY coordinates and the error with respect to the Z component.
This second one is lower for all cases, ranging only between 2.7 cm. and 7.6
cm. with an average of 3.9 cm. for the test set. By analyzing carefully the
distribution of the points in respect with the generated model, it is observed
that common and chain lines are often composed of two small sublines, with
the generated model placed between them, as it can be seen in Figure 7.21.
Extensions of this work will include ways to detect these situations and generate
submodels in order to improve the error fitting.

7.4 Conclusions

In this chapter, a methodology for classifying and modelling the elements of a
power distribution corridor from airborne LiDAR point clouds has been intro-
duced. An initial stage looks for detection of the corridor in the points using
binary images which combines different features extracted from the LiDAR data
and determined the presence of pylon and wire elements. It differs from similar
algorithms in the fact that it does not require an initial ground detection stage,
saving on computational cost. Any false positives in the detection are solved by
grouping the candidate points and analyzing the distribution of return values
and mean intensities of each cluster.

A second stage adds detail to the power corridor classification and generates
vector models for all the different elements in the corridor. It identifies the lines
and categorizes them into three subclasses: shield conductors, common conduc-
tors and chains. It is also able to separate pylons into two types: suspension
pylons, from which points belonging to the subclass insulator are identified; and
anchor pylons, in which chain conductors can be found. Considering the current
state of the art, this seems to be the first work so far in which such a differen-
tiation is applied regarding classification of power corridor scenes. The pipeline
also segments the wire points into individual conductors and generate models
of each of them, calculating the parameters of its related 3D catenary equation.
For pylons, the system determines the number of arms and generates a vector
model including a line for the pole and lines for each arms. The points in which
conductors hang from the tower are also added to the pylon model.

The results given by the method on a test set with 25 different point clouds
are promising, with a recall of 94.90% for pylon classification and 99.58% for wire
classification. Furthermore, the pipeline is able to correctly segment and model
up to 96.15% of insulator strains, 92.86% of the individual shield conductors,
93.93% of common conductors and 97.22% of chain conductors, with an average
error of 0.19 m. between the models and the data, which is accurate enough for
the industry standards in terms of maintenance of the power corridor. Moreover,
the proposed pipeline was directly compared with a reference method over a set
shared by their authors, demonstrating the technique is competitive against the
state of the art.

However, there are still drawbacks to be solved in this proposal. The main
one is the error generated in the wire modelling, which is higher than in other
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state-of-the-art techniques. Much of this the reported error occur in the XY
coordinates and come from the fact that a conductor is not always a single wire,
but several wires slightly separated and tied together with staple-like pieces.
Although the industry considers this a single conductor, an extension of the
technique that allows the detection of all the small wires and the staple pieces
can be convenient and will improve heavily the accuracy of the model.

Additionally, other new lines of work and collaboration in the field of power
line management could surge from the work described in this chapter, contribut-
ing to the prior detection and solution of potential risks and avoiding energy
service incidences and forest fires. Some of them are the detection of objects
that could affect the power line from the point cloud data, the inclusion of ma-
chine learning techniques in the pipeline to ease the identification of elements
in the scene, or the development of an efficient viewer to show the extracted
power line and its surroundings with the goal of indicating possible risks and
their location.
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Chapter 8

Identification and removal
of noise artifacts in
airborne point clouds

In the previous chapters, the need of point segmentation in order to generate un-
derstandable models from point clouds has been exposed and different solutions
for extracting ground, vegetation, trees, urban objects and power objects have
been proposed. These point segmentation processes, as well as the others in
the state-of-the-art, require clouds in which all the points are semantically and
spatially correct and truly represent the acquired scene. Although the current
LiDAR sensors are capable in most cases of producing accurate point clouds,
sometimes points that are not representative of the scene or are incorrectly
placed are introduced in the point cloud. Such points are known as noise, and
they are generated due to multiple natural and artificial causes.

To properly perform point segmentation, all the noise should be identified
and filtered out from the point cloud in the first place. There are many studies
dedicated to remove particular noise artifacts from the echo waveform [209],
from the points [210], or even programming libraries of point cloud tools with
statistical noise filters (LasTools1, PDAL2). Despite of this, in practice most of
these tasks must be manually revised, generating cost overheads. In the most
severe cases, with high densities of noise points, the problem can lead to reac-
quiring the whole point cloud, which is not always economically or practically
feasible, e.g. the high costs of programming acquisition flights.

In this chapter, a methodology for noise removal is proposed after the iden-
tification of different types of noise in one-strip airborne LiDAR point clouds.
The filtering pipeline takes the original point cloud and optionally the acqui-
sition data, generates multiple slices to stabilize time execution and solves in
parallel each observed noise artifact by exploiting their characteristic reflectivity

1https://rapidlasso.com/category/noise/
2https://pdal.io/workshop/exercises/analysis/denoising/denoising.html
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and spatial features. A junction classifier returns the final noise classification.
This methodology is validated against a data set of 20 point clouds that contain
many different types of noise, demonstrating its potential for noise filtering.

8.1 Related work

Several authors have proposed methodologies on how to remove noise and arti-
facts out of the LiDAR output point cloud. Ferdinandov, Tsanev, and Todorov
[211] introduced the Signal to turbulence, a quality metric for behaviour vali-
dation, also commonly called Signal to noise. This metric is used afterwards
in several works. After this initial step, the works can be divided into two cat-
egories: (i) full echo waveform and (ii) noise classification over the raw point
cloud.

In relation to the echo-related works, several lines of research have been
published. One of them is the use of a semi-automatic pipeline which applies
low-pass and high-pass filters over the signal before the manual removal is per-
formed [212]. Lerkvarnyu, Deijhan, and Cheevasuvit [213] proposed the Moving
Average (MA) technique, in which the output signal is generated using the
average of several points in the input signal. Fang and Huang [214] applied
Discrete Wavelet Transforms (DWT) to extract weak signals which could be
missed due to noise. In the work of Reddy et al. [215], Hard Wavelets (HW) for
filtering noisy echo signals, and Li, Gong, and Ma [209] introduced the Empir-
ical Model Decomposition (EMD) methodology for the same objective. A later
research conducted by Sarvani, Raghunath, and Rao [216] showed a superior
performance of the EMD technique when compared with MA, HW and Fourier
transforms for noise filtering in airborne and atmospheric LiDAR point clouds.
More recently, Chang et al. [170] proposed an improvement of the EMD tech-
nique based on a roughness penalty, and Qin and Mao [217] extended the DWT
concept to machine learning with the creation of a wavelet self-adaptive neural
network for noise reduction.

About classification of noise points, most of the current works deal with dif-
ferences in height or intensity or make spatial analyses of the data. An example
of this can be seen in the work of Nardinocchi, Forlani, and Zingaretti [218], in
which step regions are detected using a 2D height grid generated from the cloud
and spatial relations between those regions are used to distinguish between veg-
etation and noise regions. Nobrega, Quintanilha, and O’Hara [219] applied a
diffuse anisotropic filter over a 2D image generated using point intensities, with
the assumption that their objects of interest share the same intensities through-
out their points, which suggests that acquisition of data was made via vertical
flight and distances object-sensor are approximately the same. Liu et al. [188]
applied a filter stage for points with abrupt changes in height or intensity prior
to power line detection. Zuowei, Yuanjiang, and Jie [220] voxelized the cloud
and used Finite Element Analysis to determine, based on a 26-neighbourhood
criteria, whether a point group should be tagged as noise. Rashidi and Rastiveis
[144] removed points with an intensity lower than a certain difference from the
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local mean of intensities. Ullrich and Pfennigbauer [210] exposed the concept
of range noise and proposed an averaging technique for their elimination. And
finally, Cheng et al. [221] presented the unsupervised network LidarStereoNet,
which aims to correct noise and misaligning issues in point clouds, and at the
same time, find the depth of segmented objects in stereo camera images by using
the points correctly acquired.

Most of the works in the classification category only focused on filtering
the most common issues, normally related to outliers and aerial, very scattered
punctual noise. However, other types of more complex noise artifacts can be
found due to errors in the installation of the sensor in the aircraft, the sensor
itself, delay on the echo acquisition, special atmospheric conditions, etc. These
artifacts could cause many hours of manual post-processing or even repeating
the acquisition flight, and thus an increase in the economical cost of the LiDAR
acquisition and classification tasks. Our contribution is a more detailed study on
these noise artifacts, and possible techniques to get rid of them in an automatic
manner.

8.2 Case of study

The case of study in this work is a new open data set with 20 noise point clouds
that can be found in the work demo webpage3. The point clouds represent
different power line corridors and have diverse sizes of between 360000 and
2900000 points, and point densities between 16 and 39 points per square meter.
Their individual sizes and point densities can be found in Table 8.1.

Cloud Size Density Cloud Size Density
1 28086858 23.82 11 24341943 20.3
2 28086858 25.57 12 24341943 20.13
3 11754595 24.67 13 24341943 37.7
4 360605 21.21 14 24341943 38.93
5 24341943 19.93 15 24341943 37.33
6 24341943 20.17 16 24341943 33.93
7 24341943 19.93 17 8880053 31.61
8 24341943 19.46 18 24341943 31.11
9 24341943 20.14 19 24341943 29.47
10 24341943 21.16 20 18227923 16.52

Table 8.1: Sizes and point densities per square meter for each of the case study
point clouds

The point clouds have been provided by a company specialized in LiDAR
flights, came from 5 different helicopter flights and have been acquired with the
Riegl VQ-580i and VUX-1LR sensors, mounted over a IMU-FSAS-NG inertial
unit. Flights have been performed in three countries: Angola, Panama and

3http://193.145.147.50/noiseDemo/
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Spain, during 2017 and 2018. They have been done with a variable height,
between 100 and 300 meters over the ground, and an average speed of 40 knots,
in order to minimize the number of strips and avoid potential point overlaps.
This is also the main reason to use a helicopter for flight acquisition instead
of an airplane. Additionally, a noise ground truth made by experts from the
company has been provided for each point cloud.

8.3 Noise case studies in airborne LiDAR point
clouds

The first step to be followed in a research about automated detection of le-
gitimate LiDAR echoes and noise points is to identify the different possible
scenarios and how undesired points are distributed into them. In this section,
the different noise typologies found in the case study are enumerated. Accord-
ing to their visual appearance, they have been classified into seven categories:
scattered, arched, tubular, striped, echo, floating blob and dense. Details for each
of them are provided in the following subsections.

8.3.1 Scattered noise

It is the most common noise type in LiDAR point clouds and it consists of
points that are floating in the point cloud in an isolated manner and have no
clear relationship between them or with the rest of the points in the cloud. A
good example of scattered noise can be seen in Figure 8.1.

Figure 8.1: Scattered noise (in reddish tones) over a section of a point cloud.

This kind of noise can appear in any place on the point cloud and occurs
due to diverse causes. Those causes are both natural, like dust, aerosol gases
[127] or flying birds; and artificial, as in the case of spurious sensor misreads.
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8.3.2 Arched noise

This noise type is the structured version of the scattered type. Also called range
noise [210], the points belonging to this category are distributed in a way that
resembles those of an arc aligned in the same direction of a singular strip. This
is shown in Figure 8.2.

Figure 8.2: An arched noise artifact found in a section of Point Cloud 4 (red
points). The artifact is aligned with the acquisition strips direction.

Due to its aligning and geometric nature, this error type is supposed to
be related only with sensor misreadings and can be found below, over or even
crossing the terrain-representative part of the point cloud.

8.3.3 Tubular noise

The term tubular noise refers to dense noise artifacts whose points are dis-
tributed with a tubular shape. These noise artifacts traverse the point cloud
following a meandering path that is also relative to the position and yaw-pitch-
roll angles of the flight vehicle (in this case of study, a helicopter). An example
of these noise artifacts is shown in Figure 8.3.

Identically to the arched type, the tubular noise can go over the cloud, below
the point cloud or through the terrain. Moreover, in all the point clouds of the
case study where this type is present, two distinctive characteristics have been
observed:

� Repetition: wherever a tubular artifact is present, it is very usual to find
one or two similar tubular artifacts in its vertical.

� High reflectivity: In the studied cases, tubular artifact points show,
disregarding the point cloud, a very high intensity average value. This
average value is always superior to 1.5 positive standard deviations over
the reflectivity average of the rest of the point cloud. These patterns can
be seen in Figure 8.3.



152 CHAPTER 8. IDENTIFICATION AND REMOVAL OF NOISE

Figure 8.3: Tubular-like artifacts traversing a point cloud, along with some
scattered noise. Point reflectivity is reflected in grayscale. High reflectivity and
repetitive patterns can be appreciated.

8.3.4 Striped noise

This name has been given to noise clusters disposed in the shape of lines, rays
or spirals which could affect the whole or just small areas of a point cloud.

Striped noise artifacts can be subdivided into two main groups. The first
one has certain similarities with the tubular type: it traverses the point cloud
using a path dependent on the position and angles of the helicopter flight. From
now on, it will be called strand. The second type of striped noise artifacts tends
to be local and has no relation with the helicopter trajectory: it will be called
ray.

Figure 8.4: Multiple strand noise artifacts affecting a point cloud. They can be
seen in reddish colors, darker or lighter according to their reflectivity.

The strands, which are visible in Figure 8.4, differ from the tubular type in
their shape (which is a polyline instead of a tubular-shape group) and in the
fact that, although they have distinctive intensity and repetition patterns, they
admit more variability than the tubular case. Differences can be resumed in the
following manner:

� Repetitions: more than two repetitions of the pattern can show up ver-



8.3. NOISE CASE STUDIES IN AIRBORNE LIDAR POINT CLOUDS 153

tically stacked . Additionally, the pattern can occasionally be found lat-
erally duplicated with the same repetitions.

� Reflectivity: When the strand artifact only repeats vertically (or does
not repeat), all the strands present an average reflectivity of at least a
positive standard deviation with respect to the average intensity of the rest
of the point cloud. On the contrary, when lateral repetitions are found,
they present a very low average reflectivity: lower in all the studied cases
than two negative standard deviations from the average of the rest of the
point cloud.

Figure 8.5: Ray noise artifacts (marked with red tone) going through the terrain
part of the point cloud.

Rays are arbitrary alignments of noise points (see Figure 8.5) which occur
locally in the point cloud. Rays occur in any location: over, below or crossing
the terrain-representative part of the point cloud. Unlike strands, rays can also
have any reflectivity and do not repeat in the same exact shape in other parts
of the point cloud.

8.3.5 Echo-like noise

Noise artifacts are said to be echoes if they are produced by a delay of the
sensor on reading a response echo and they generate a representation of the
real object in an incorrect position, generally further from the sensor than the
expected one. When echo artifacts occur, a lesser density or even no points are
also appreciated in the real representation of the object in the point cloud.

Echo noise artifacts are particularly easy to identify and severe for the ac-
quisition process when they affect power line scenes, as in Figure 8.6. Apart
from their shape, they are identifiable for their reflectivity, which are still the
expected for the corridor and normally higher than the ones for their surround-
ing points, as the reflectivity in LiDAR diminishes in relation with the square
of the distance to the sensor [170].
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Figure 8.6: Echo noise artifacts (right).The input respects the shape of the line
and the reflectivity of the points on the line being inspected, but the position is
incorrect. A void is also observed in the affected corridor area.

8.3.6 Floating blob noise

This noise type, previously defined in the work of Santana et al. [222], has the
appearance of a floating cloud of particles, like the one in Figure 8.7. Unlike
tubular noise, a floating blob is always distributed really close to the GPS po-
sition of the sensor in the given moment, does not repeat in other parts of the
cloud and does not have any other distinctive feature, nor in reflectivity neither
in density. It usually happens due to sensor misalignments in the helicopter
that generates false responses.

8.3.7 Dense noise

A cloud is said to have dense noise in cases where one or multiple types of noise
are found on it and the amount of noise points per square area is high enough
to make the differentiation difficult, even manually, as happened in the case of
Figure 8.8. Dense noise could require filters that exploit non-spatial LiDAR
features. Although dense noise scenarios rarely occur, it is usually observed in
environments with an atmosphere full of reflective particles (water, dust, ashes)
or when the acquiring sensor is severely damaged.

8.4 Strategies for the filtering of noise

In this section, different solutions for filtering each one of the abovementioned
noise typologies are exposed, and also how to combine them to generate a fi-
nal noise classification for any input point cloud. Each problem described in
the previous section is managed separately, leading to a working pipeline with
different stages whose architecture is depicted in Figure 8.9.

In this preprocessing architecture, the inputs are the original point cloud and,
when optionally available, the flight data of the helicopter. The first stage aims
to solve floating blobs of noise, which requires the flight data input. After it, a
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Figure 8.7: Floating blob of noise (in dark, left part of the cloud) parallel to a
power corridor inspected using a LiDAR flight.

second stage divides the point cloud into slices and, for each slice, all possible
point groups are determined in a coarse manner. Slice information is used
thereafter as input for the parallel detectors for the remaining noise typologies,
along with the point cloud. Up to five noise detectors can be enabled, and they
are focused on subterranean, arched, scattered, echo, tubular and striped noise
artifacts, respectively. Finally, a junction classifier combines the predictions and
returns as output the point cloud with its final noise classification.

Each one of these stages are detailed in the following subsections:

8.4.1 Floating blob detector

This noise detector looks for proposing a classification of floating blob noise
related points by applying a modified version of the algorithm of Santana et al.
[222]. This algorithm starts by pairing each point in the cloud with the sensor
position at reading time, using timestamps and flight data, and for all the pairs,
a 3D Euclidean distance is computed.

A histogram of all sensor-point distances, like those in Figure 8.10, is gener-
ated. When a floating blob of noise is found in the point cloud, the histogram
will show an initial pick of high density of points close to the sensor, followed
by a valley and the main pick of points. On the contrary, a progressive rise to
the main peak of the histogram is observed when no floating blobs are found.

The algorithm considers part of a floating blob and therefore filters any point
belonging to the initial peak of the histogram by computing the local minimum
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Figure 8.8: Point cloud heavily affected with arched and tubular noise artifacts.
The density of noise points is high enough to make pointing out which points
are representing terrain or trees hard, even with the human eye.

dmin in the valley between both histogram peaks. In our proposal, this remains
untouched.

However, Santana et al. proposes the removal of any remaining scattered
noise between the blob and the real scene by using the algorithm of Rusu et
al. [207]. It suppresses outliers using deviations with respect to the mean of
point-to-point distances as basis. This technique is useful for such a task, but
it was designed to be applied in small clouds representing interior areas and
it makes point-to-point calculations for all the points in the cloud. This fact
becomes a great weakness in terms of computational cost when used against
heavy sized, high density airborne point clouds, as in this case of study. To
avoid this situation, this part of the original algorithm is ignored, and any
possible scattered noise remaining in the point cloud will be later processed by
the scattered noise detector of the pipeline.

8.4.2 Point cloud partitioning: the slice generator

This is a control stage which aims to extract valuable spatial information about
the point cloud which can be used in detectors and at the same time maintains
the computational time stable for high volumes of data.

In natural and urban scene point clouds, the most valuable information is to
find the approximate position of the terrain level or, at least, of elements which
are obviously related with the real scene. If spatial clustering techniques are
applied to the point cloud, the expected result is to have most of the points in
the real scene grouped in a unique cluster, whose shape is probably elongated
and oriented in the same directions followed in the flight. However, most of
the clustering techniques required a previous knowledge of the total number of
groups (e.g: k-means), which is normally not possible for point clouds; or paying
a high computational cost that make the algorithm impractical for great volumes
of work. This is the case of hierarchical clustering methods [123], although they
do not require previous group knowledge.
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Figure 8.9: Noise filtering pipeline architecture. Noise detectors for the different
noise topologies are marked in green. Control stages are marked in blue.

To circumvent this obstacle, the point cloud is sliced perpendicularly to its
longest axis, from now on X. The cuts are performed equidistantly along the Y
axis a distance ∆X. Hence, the agglomerative clustering algorithm [123] can be
applied to each slice instead of the whole point cloud, resulting in groups like
those of Figure 8.11.

∆X must be chosen so it is large enough to keep the noise on it identifiable,
and short enough to keep the clustering time bounded. Let an example be
a point cloud with a spatial resolution of 50 points per square meter and an
average width of 100 meters. ∆X = 10 m. generates slices in which terrain
and other objects are ensured to be grouped, and at the same time stabilizes in
a maximum of half a million points the amount to be processed, which can be
done at a maximum time of 2 seconds per slice in a low-end computer.

Another decision to take is the stopping offset, C, for the clustering algo-
rithm. It should be wide enough so points related to real objects are grouped
in a singular cluster, but tight enough to separate suspicious points in indepen-
dent groups. For the previously described example, an offset between 2 and 5
m. works fine for almost all the cases.

The grouping result should be analyzed to determine which of the Gij groups
in a slice Fi represent real objects. This is achieved by testing the following
length, size and adjacency conditions:

� Length:
(
max

(
GYij
)
−min

(
GYij
))
> α1

(
max

(
FYi
)
−min

(
FYi
))

� Size condition: sizeof
(
GYij
)
> α2 · sizeof (Fi)

� Left adjacency: hausdorff (Gij , Fi−1) < C and closest point in Fi−1
passes at least one condition.
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(a) Floating blob - cloud 19 (b) Normal - cloud 5

Figure 8.10: Two distance histograms generated for cloud with and without a
floating blob. A secondary peak and a valley are visible in the histogram when
floating blobs affect the cloud

� Right adjacency: hausdorff (Gij , Fi+1) < C and closest point in Fi+1

passes at least one condition.

where the sizeof operation returns the amount of points in the set and the
hausdorff operation returns the Hausdorff distance [223] found between the two
sets of points. The length condition looks for groups in the slice which extends
longitudinally over the slice: they are supposed to contain terrain and objects.
The size conditions look for the groups with the majority of the points in the slice
for similar reasons: clusters of terrain and real objects are expected to be denser
than those with noise. Length and size conditions depend on factors, α1 and α2,
relative to the longitude and the amount of points of the slice. Experimentally,
both are assigned 0.33 of the total. Finally, both adjacency conditions look for
identifying smaller groups representing objects that continue in adjacent slices.
That could happen for tree and rooftop clusters, for instance.

A group represents the real scene when at least one of the four conditions is
fulfilled. Otherwise it remains unmarked. Whether their content is noise or not
is to be determined by the next stage: the noise detectors.

8.4.3 Subterranean point detector

This detector is dedicated to finding noise artifacts of any kind happening below
the terrain level. It follows these stages:

1. Create a grid, H, in which each cell represents a square meter of horizontal
area in the point cloud. It should be initially empty. We assign each cell
the minimum point height found in it for the real points.

2. For the rest of points in the point cloud, the ones which lay in cells with
an assigned value are taken. If their height is lower than the cell value,
the point is considered subterranean noise.
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Figure 8.11: Clusters found in one slice. The larger bluish one is as long as the
width of the point cloud, so it is not expected to be a noise cluster. Shorter
ones (in different colors) could be noise or other objects, like sections of wires,
rooftops or trees.

3. For any group Gij of points containing at least a subterranean noise point,
the whole group is considered subterranean noise and their points classified
in that manner.

The output is a classification of subterranean noise points for the entire point
cloud.

8.4.4 Scattered and arched noise detector

Given the slice information and the point cloud, this detector proposes as scat-
tered noise any cluster Gij of points whose total size is 1. For filtering purposes,
the arched noise is quite similar to the scattered noise and can be dealt with
using the same technique, taking into account the density of the arched artifact
when selecting the proper clustering C factor in the slicing stage.

8.4.5 Echo detector

This stage finds echo noise artifacts by exploiting the fact that reflectivity is
dependent on the distance to the reflectant point [170]. An echo point usually
has an intensity similar to the expected for the object it is supposed to represent,
as commented in Section 8.3, and higher than the expected for the position it
finally had.

Finally, for most cases the echo phenomena occurs below the main point
mass and it could also be removed using the subterranean detector, so the echo
detector looks for filtering echo artifacts places at the borders of the point cloud,
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where the terrain level might be unclear and the surrounding points have the
lowest possible intensity values. The proposed steps to do so are:

1. Generate a grid, H, analogous to the one in the subterranean detector.

2. Select as candidates all the points p in the point cloud which lay in unas-
signed cells of H.

3. For all the candidates p, their average reflectivity Rp and the standard
deviation Sp are computed. The average reflectivity of all the non p points,
Rscene, is also computed. A point i in p could be considered echo noise
when it fulfills the conditions:

Ri > (Rp + Sp)

Ri >= Rscene

Those point clusters containing a majority of points that fulfill the conditions
will be considered echo noise as a whole and all their points will be classified
into this category.

8.4.6 Tubular detector

In order to detect tubular noise artifacts, the tubular detector exploits their
high reflectivity feature in the following manner:

1. For all points marked in the slicing stage as belonging to the real scene,
their average reflectivity and the standard deviation of their reflectivity
values are computed.

2. The same is computed for each one of the non-marked groups, per group.
A group is proposed as a candidate to be part of a tubular artifact if their
reflectivity average is above 1.5 positive standard deviations with respect
to the real scene average.

3. Another particular condition of tubular noise artifacts is that they may
traverse the terrain, meaning that there could be points in the real scene
groups that could belong to the noise artifact, if existing. A preventive
test is applied to detect and remove such points. Again, the average and
the standard deviation of reflectivity is computed, in this case for all the
already existing candidates. A very high average Rtube and a small de-
viation Stube are expected. In the points marked as real, those whose
intensities move in the range [Rtube−Stube, Rtube+Stube] are also selected
as candidates. All the candidates are then grouped by the same clustering
algorithm used in the slicing stage, with identical settings. All groups gen-
erated containing original candidates can be considered as tubular noise,
discarding the rest.
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4. All the noise candidate points N in Step 3 are the output of the stage if
and only if their number of points satisfy the expression:

sizeof(N) >= ∆NX · 2 · widthS · repsS

where widthS is a width factor for the tube and repsS is the expected
number of tube repetitions in the point cloud. As a default, they are
assigned 5 m. and 2, as they prove to work well for the studied dataset,
but they can be modified to fit the scenario. This last step tests the
repetition and continuity patterns identified for the tubular noise.

8.4.7 Stripe detector

This detector also exploits the extreme reflectivity values of some stripe noise
artifacts. The detection algorithm is analogous to the one exposed for the
tubular detector, except for two main differences:

� In Step 2, the points are selected if they have a reflectivity value higher
than a positive standard deviation with respect to the average, or lower
to two negative standard deviations.

� Step 4 is suppressed, and the results of Step 3 are suggested directly.

8.4.8 Junction classifier

This final control stage generates the final classification as the union of all the
parallel-generated predictions. Optionally, it can separate noise predictions into
safe and ambiguous: they are considered ambiguous when the points were also
marked as belonging to the scene by the slicing stage. This report eases the
intervention of a human expert in case of false positives. However, for validation
purposes, all of them are considered noise.

8.5 Validation

In order to validate the behaviour of the exposed noise removal methodology,
tests have been run over all the point clouds included in the open data set de-
scribed in Section 8.2. Noise predictions have been compared with the provided
expert-made ground truth and quality measures have been extracted: recall,
precision, and F1 scores. Details on how to compute this scores are provided in
Annex I. The results obtained for the test are introduced in Table 8.2.

Promising conclusions can be extracted from the test. The overall noise clas-
sification has a completeness rate of 96.61%, a precision of 97.88% and a quality
score F1 shows 97.24%. For the non-noise class, the three scores are in numbers
over 99.98%. This seems to confirm the applicability of the methodology for
noise filtering in airborne LiDAR point clouds.

However, it can be individually seen that the results of the clouds 18 and
19 differ from the overall results, with worse results of 73.8% and 63.9% in F1.
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TP FP FN Recall Precision F1
1 14704 150 24 0.9895 0.9983 0.9939
2 49761 56 758 0.9850 0.9989 0.9919
3 74637 206 751 0.9741 0.9972 0.9856
4 2462 0 86 0.9662 1 0.9828
5 243172 2093 14871 0.9424 0.9915 0.9663
6 164380 8474 8985 0.9482 0.9510 0.9496
7 212752 9217 10864 0.9514 0.9585 0.9549
8 209769 5393 18782 0.9177 0.9749 0.9454
9 173657 2027 6163 0.9706 0.9902 0.9803
10 148869 9888 10467 0.9432 0.9461 0.9446
11 148669 11281 9254 0.9414 0.9295 0.9354
12 190045 411 2372 0.9877 0.9978 0.9927
13 45586 644 948 0.9796 0.986 0.9828
14 31563 533 487 0.9848 0.9834 0.9841
15 29206 1552 1893 0.9391 0.9495 0.9443
16 26772 2651 949 0.9658 0.9099 0.9370
17 15295 64 266 0.9829 0.9958 0.9893
18 1559 528 578 0.7295 0.7470 0.7382
19 358 317 86 0.8063 0.5304 0.6399
20 750593 621 975 0.9987 0.9992 0.9989

Totals 2587639 56106 90789 0.9661 0.9788 0.9724

Table 8.2: Final results obtained for each one of the point clouds of the open
data set for noise classification.

Figure 8.12: F1 scores for all the tubular and blob noise affected point clouds.
The overalls for each type are marked in highlighted colors.
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1 2 3 4 5 6 7 8 9 10
subterranean × × × × × × × ×

scattered × × × × × × × × × ×
tubular × × × × × ×
striped

echo
floating blob

dense × ×
11 12 13 14 15 16 17 18 19 20

subterranean × × × × × × ×
scattered × × × × × × × × ×

tubular × ×
striped × × × × ×

echo × ×
floating blob ×

dense

Table 8.3: Noise typology per cloud. All the point clouds present at least two
of the studied noise scenarios.

The referred classes also differ in amount of noise with respect to similar sized
point clouds, which makes necessary an analysis per subcategory. This will take
into account the noise typology present in every point cloud, which is offered in
Table 8.3.

Figure 8.13: F1 scores for all the stripe and dense noise affected clouds. The
overalls for each type are marked in darker colors.

Each point cloud presents two or more of the studied noise types. Scattered
and subterranean noise are present in 19 and 15 point clouds, respectively, being
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Figure 8.14: F1 scores for the echo noise affected point clouds. The overall is
marked in darker color.

the most common problem to deal with. Tubular, striped, echo, floating blob
and dense scenarios do not occur at the same time, but tend to be associated
with one of the different flights from which the point clouds were acquired,
and they are always accompanied by common noise. Particularly, the above-
mentioned clouds 18 and 19 are the only ones affected by echo noise.

In the subcategory detail, the overall F1-score achieved for the clouds that
include tubular noise is 95.95% , with all the point clouds involved ranging be-
tween 93.5% and 99.2% in this quality measure, as it is seen in Figure 8.12.
Similar results have been found for the point clouds that include line noise,
whose overall F1 score is 96.7%, with a minimum of 93.7% for cloud 16 and a
maximum of 98.93 for cloud 17, as shown in Figure 8.13. From both referred
figures can also be seen an even better behaviour for clouds with dense subter-
ranean and scattered noise, with all the point clouds scoring at least 98.5% in
F1, and for floating blob noise, with an F1 score of 99.89%. For all the types of
noise scenario, a sample figure of the final prediction is given in Figure 8.15.

This is found not to be the case for the echo noise point clouds (see Figure
8.14). As commented, both clouds performed worse than the rest of cases,
with an overall F1-score of 71.76%. Those are clouds only slightly affected
by noise, but in which echo, subterranean and scattered cases can be found.
The subterranean and scattered noise are common in all the point clouds and
uniquely represented in the two dense scenarios of the open set. As they are
filtered with good accuracy for the rest of the point cloud, the poorer results
achieved in Clouds 18 and 19 could point at the echo detector.

From the visual inspection of the point cloud 18 (Figure 8.15 - e) it can
be seen that parts of the echo are well classified and others are false negatives,
which means that, for some slices, not all the echo points are reflected in a single
group, and failures are scattered instead of being concentrated. A possibility is
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that a methodology only based on intensity averaging is more prone to fail due
to one point in the group modifying the average of its group.

8.6 Conclusions and future work

In this chapter, a research on noise artifacts has been performed on a case
of study composed of several LiDAR point clouds. Noise artifacts have been
identified and categorized according to their visual appearance, resulting in the
subcategories scattered, arched, tubular, striped, floating blob, echo, and dense
noise artifacts. Moreover, a parallel multistage pipeline has been proposed to
filter out the noise. Clustered slices are extracted from the original point cloud
to stabilize the execution time and reflectivity, point-helicopter distances and
spatial features are extracted and combined from each slice to filter each type
of noise in a specialized detector. A junction classifier then generates the final
result from each parallel detector.

The achieved results are promising, achieving an F1-score of 97.24% in noise
removal for the complete set of 20 point clouds. The same score, when calculated
only for point clouds containing the particular tubular, striped, echo, dense and
floating blob artifacts, is 95.95%, 96.74%, 71.76%, 98.81% and 99.89% respec-
tively. This demonstrates the utility of the proposed pipeline for the filtering of
most of the noise artifacts in a LiDAR point cloud.

Future steps in this line of work can include improvements in the echo and
stripe noise detectors, considering not only reflectivity but also spatial and echo
features, and to make an extended validation over a larger amount of noise-
affected point clouds.
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(a) Point cloud 1 (arc-like noise artifacts, in yellow).

(b) Point cloud 2 (dense subterranean noise, in yellow).

(c) Point cloud 6 (tubular and scattered artifacts, noise in yellow).

(d) Point cloud 15 (stripe artifacts, noise in yellow).

(e) Point cloud 18 (echo artifacts, noise in yellow).

(f) Point cloud 20 (floating blobs, noise in yellow).

Figure 8.15: Predictions for different noise situations in the case of study.



Chapter 9

A lightweight viewer and
editor of LiDAR point
clouds

In previous chapters, methods for segmenting, characterization and modelling
of different classes of objects represented in LiDAR point clouds have been
introduced. During the research in those topics, the need for a viewer in which
to observe the different obtained results in a quick and friendly manner surged.
As the computer used for viewing the results is the same used for generating the
results, a light client with the minimum possible resource consumption becomes
desirable. This way, reviewing the results in some point clouds can be done as
other clouds are processed in parallel.

Moreover, the viewer should have features for the edition of the point clas-
sification. Editing allows to create ground truths for the evaluation of the algo-
rithms proposed in this document or, if it becomes necessary, to train models
for new machine learning based algorithms. This implies having several tools
for selecting all the points inside an area of interest, or only the points from a
determined class. Points should also be displayed coloured in base to the already
present classification values and also other point attributes, such as intensity.
By showing that information, the task of creating a whole new classification
from scratch is eased.

Two alternatives had been explored: using already existent viewers and
creating a custom point cloud viewer for the daily tasks required in the research.
The second one was the chosen option. In this chapter, an analysis of the
different tested point cloud viewers is exposed. After that, the proposal of the
new viewer is introduced. It includes the decisions that were taken in relation
to the camera controls, the LoD strategy and the implemented point selection
modes.

167
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9.1 A review on point cloud viewers and tools

This section enumerates several applications and tools which are widely used
at the moment of writing this chapter for the visualization and edition of point
clouds. Their main features are also described and resumed, in order to have a
general view of the state-of-the-art on this topic. However, it should be noted
that there could be more point cloud viewers that are not included in the list.
Additionally, the viewers in this list can introduce new features and modifica-
tions in the future, or can be outdated and removed from the state-of-the-art, so
the reader is encouraged to visit the included sources for updated information.

The viewers have been divided into three categories according to the targeted
platform: desktop applications, web applications and toolboxes.

9.1.1 Toolboxes

LasView

It is a basic editor of point clouds included as a standalone command-line
tool in the LasTools library [224]. It has been implemented using OpenGL and
it was designed mainly for manual classification and removal of noise points in
.LAS, .LAZ and ASCII formatted point clouds. It allows navigation of the cloud
via selection of the preferred action on the keyboard: translation, zoom, pan
or tilt. Selection of points can be done one-by-one or by specifying a polygon.
The classification value of each selected point can be manually changed to any
possible value or cleared. Alternatively, classification processes of the LasTools
library can be called.

For a fluid visualization, the viewer performs subsampling of the point cloud
in order to fit a point budget. By default, the budget is set to 5 million points,
although the user can change this setting freely. Additionally, it is possible to
avoid undesired classes to be shown in the scene. Point colors are automatically
assigned according to the attribute of the point cloud of interest.

The LASTools library in which this viewer is included is a suite of command
lines for classification, tiling, compression, conversion, filtering, rastering, trian-
gulation, clipping and polygon generation from LiDAR data. It was developed
by Martin Isenburg and it is distributed in two parts, one of them as open
source (LGPL license) and the other is closed and oriented for commercial use.
Although it can be used freely, it is more known for their ease integration into
GIS platforms such as ArcGIS and QGis than for their standalone use.

Matlab PointCloud Toolbox Viewer

It is mainly a plotting tool included into the Point Cloud toolbox of Matlab
[225]. It allows translation, zoom, panning and tilting via selection of the desired
action in a camera toolbar, as can be noted in Figure 9.1. Color is automatically
generated based on height component of the points, although it allows alterna-
tive options based on RGB or user-criteria. Selection can be performed point
by point in order to query the data, but edition is not allowed in the viewer. No
level of detail (LoD) strategy is applied to the figure: it plots the user input as
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is. The viewer is not standalone: it requires Matlab to be executed.

Figure 9.1: Matlab point cloud viewer showing a power line corridor cloud.
Navigation controls can be found in the camera toolbar (the lowest).

The Computer Vision and Point Cloud Processing Toolbox, in which this
viewer is included, provides reading, writing, downsampling, transformation,
segmentation, denoising and shape recognition functionalities. As the toolbox
works in the Matlab environment, edition of all the data in the point cloud,
triangulation and use of several machine-learning techniques for classification
are also available. The toolbox is oriented to PCD formatted clouds, although
plugins for other point cloud formats have been designed for the community.

PCL Visualizer
Analogous to the Matlab viewer, it is a plotting tool included into the Point

Cloud Library (PCL) [226]. The viewer allows mouse navigation in a virtual-
globe style and multiple user-customizables ways to colorize points and other
PCL algorithm outputs. Selection can be done point-wise, although edition
is not available in the visualizer. The visualizer does not perform any LoD
strategy either and limits itself to plot what the user requests. The viewer is
not standalone but can be called in any custom software that makes use of the
PCL Library.

The PCL Library, in which this viewer is included, is the most used tool-
box for C++ and Python to process point clouds. It was developed by Rusu
and Cousins [227] and includes several algorithms for feature estimation, seg-
mentation, filtering, surface generation and creation of LoD structures such as
KD trees and Octrees. It is distributed in the form of libraries for each main
operating system and it is free to use (BSD license) for both commercial and



170 CHAPTER 9. A VIEWER AND EDITOR OF POINT CLOUDS

research purposes.

Unreal Point Cloud Plugin

It is an add-on for the Unreal engine [228] which allows to import point
clouds and exploit the visualization, illumination and navigation capabilities of
that graphic engine. Additionally, it includes capabilities for selection of points,
using a polygon as reference input. The selected points can then be edited
and reclassified. Point colors can be assigned according to any given point
attribute. It also includes functionalities for collision analysis. To improve the
performance of the visualization, the plugin relies on a point budget, similar to
that in LasView, which can be adapted for the needs of the user. As a default,
it is set as 1 million points.

9.1.2 Web applications

Potree

Figure 9.2: Figure 2: Distance measurements between points in Potree
viewer. GIS and navigation tools can be seen in the left bar. Source:
http://potree.org/potree/examples .
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It is a free point cloud renderer based in WebGL whose main goal is to show
large, general purpose point clouds. It was developed by Schütz [229] as part of
his master thesis in the TU Wien University. It requires a specific Potree format
to visualize data. A converter tool is included for the most common point cloud
formats.

Navigating throughout the cloud is possible by using several types of con-
trols, including virtual globe, fly and helicopter modes. Point colors can be
assigned according to any cloud attribute. Selection is allowed by box (3D)
and polygon (aerial view only) in order to do scene clipping. However, editing
points is not allowed in this viewer. Smoothness load of large point clouds is
achieved by a combination of a level of detail structure based on a local oc-
tree [230] and an adjustable point budget. Additionally, several GIS tools are
included in Potree, including angle, point distance (see Figure 9.2), area and
volume measurements, as well as the possibility to define and export spatial
annotations.

Plas.io

Figure 9.3: Height and intensity colormaps combined to set point colors in
Plas.io. Source: https://plas.io .

It is a WebGL-based point cloud viewer focused on loading only .las, and
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.laz formatted files, or online sources from the Greyhound lidar repository. It
is open source (MIT license) and it was developed by Butler et al. [231] . It
allows navigation in a virtual globe style, although the reference point for tilt
and pan is the center of the cloud. The main strategy to guarantee fluidness
in the visualization is a user-adjustable decimation of the full cloud. Point
colors are automatically generated via gradient from RGB, intensity, height or
classification features. Two of these colormap attributes can also be blended,
as it can be seen in Figure 9.3.

Additionally, point distance measurements, placing of 3D objects over the
cloud and inundation planes are other tools included in this application.

9.1.3 Desktop applications

Fugro viewer
It is a free desktop application for viewing LiDAR .las files and combining

them with ortho imagery and vector spatial datasets, as well as generating new
vector datasets. It is developed and distributed by the Fugro group [232]. The
software can represent the cloud in a single 3D view or divided into two 2D views.
Navigation is allowed by using common virtual globe controls. Smoothness
rendering is achieved with two different techniques: decimation of the cloud
and a grid-based LoD structure. Non-desired classes of points can also be made
invisible at user request.

The selection of points can be performed individually or using a transect :
marking a 2D area from which generate a profile in a second 2D area. There,
the selection can be performed polygonally. Direct edition of the point cloud
is not allowed, although derivative products such as DEMs, contours, points of
interest and areas can be generated and exported. Point colors can be assigned
according to any attribute of the cloud.

CloudCompare
It is a 3D processing software for the edition of point clouds and triangular

meshes. It was developed using C++, QT and OpenGL by the R&D Division
of the EDF company [233] over an initial core of Girardeau-Montaut et al. [234].
That initial stage looked for detection of differences between two point clouds or
between a point cloud and a mesh. Nowadays, the software also includes several
features to perform projections, registration from multiple sources, difference
computation, statistics and geometric feature estimations. They also include
capabilities for manual and automatic classification of point clouds, based on
the method of Brodu and Lague [235].

CloudCompare generates automatically an octree structure from the input
cloud, not only for the visualization but also for comparison and feature estima-
tion purposes. Selection is available by specifying a reference polygon or point
by point. Point colors can be assigned from their attributes or by features and
differences previously computed by the software.

Fusion-LDV
It is a research-oriented, free software for LiDAR and georeferenced data
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developed by the Department of Agriculture of the United States of America
[236]. It is composed of two separate parts: Fusion, which provides a graphic
interface for the presentation and analysis of 2D spatial data, and LDV, which
provides a 3D environment for the visualization of LiDAR data. LDV is not
standalone: it requires the use of Fusion and an associated raster source in order
to load a point cloud.

User interactions with the point cloud and point coloring have been de-
signed and implemented in a similar manner to the Plas.io viewer. Selection
of points is available via reference polygon for manual classification purposes.
Algorithms for direct classification of terrain, water and trees are also available
in the software. Finally, GIS features have been introduced in order to ease the
identification and the measurement of height and diameter of the trees.

Terrascan

Figure 9.4: Classification flow in Terrascan. A transect view composed of
a general aerial view and a selected profile area is shown. Point edition
is then performed in the profile view manually or via routines. Source:
http://www.terrasolid.com
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It is a licensed application for managing and processing LiDAR point clouds
developed by the TerraSolid company [237]. It is oriented to commercial scan-
ning campaigns and includes several features for automatic classification of the
main point classes, generation of DEM models [132], creation of LoD2 building
models or vectorization of power lines, between others. Although it contains
a 3D viewer, the program is intended to be used in transect mode (see Figure
9.4), with multiple 2D views which contain aerial and profile representations.

Navigation, point coloring and point selection in Terrascan work in a similar
manner to the Fugro viewer. It also uses the same LoD strategies to improve
the rendering performance. The main difference with Fugro is the possibility to
edit any point attribute, manually or using one of their integrated features.

Unity Viewer

It is a point cloud visualizer developed by Santana, Trujillo, and Ortega [238]
using the Unity graphic engine. It is designed for opening multiple point clouds
at once. It only accepts a preprocessed cloud format designed by the authors,
in an analogous manner to Potree, which includes a binary-tree based level of
detail structure for a seamless load of the scene. A conversion tool for .LAS and
.LAZ files is also provided.

Navigation through the cloud in Unity Viewer is possible through game-
based camera controls: mouse movements affect your center of view and WASD
key presses allow you to traverse the cloud. Selection of points is possible
individually to query their attributes. However, the edition of such attributes
is not available. Point colors are automatically assigned according to the point
classification.

3D Reshaper Viewer

3DReshaper [239] is a licensed, industrial-oriented software for processing 3D
data distributed by Technodigit-Hexagon which has support for LiDAR point
clouds, images, meshes and polylines. User interactions with the cloud are
similar to those implemented in Potree, and fluidness rendering is achieved via
a user-adjustable point budget. Point colors are set according to the point
attribute of interest.

The selection of points in 3DReshaper is based on bounding volumes instead
of polygons: boxes and spheres. Edition of points is only available in the full
and paid version of the software. Additionally, tools for 3D measurement, com-
parison between clouds and meshes and creation of labels and vector data are
available.

Limon Editor

It is a point cloud editor developed by the Dephos group [240] with support
for OpenGL, DirectX and CUDA. It allows up to four visualizers which support
2D and 3D views. Although navigation in the 3D viewer is available via virtual
globe controls, the software is oriented to work with multiple 2D viewers, in a
similar manner to Fugro and Terrascan. The paid version of the software uses
dynamic level of detail with an adjustable point budget similar to the proposed
in the Unreal plugin. In its free version, this feature is disabled and a maximum
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input size of 25 million points is accepted instead.

Selection of points is performed using the transect scheme of Fugro and Ter-
rascan. Polygon, shape and active intensity and height ranges can be used in the
profile view to choose the desired points. Edition and reclassification of points
and creation of 3D shapes and vector data are available. Point colors are as-
signed according to any point attribute. Additionally, features for measurement
of volumes, areas, point distances and coordinate conversions are integrated in
the software.

A comparative summary of each introduced point cloud viewer in all the
analyzed features can be seen in Table 9.1. For navigation, two items are intro-
duced: navigation style (up) and type of pan/tilt interaction (down). Select is
an enumerate of all the different techniques implemented for such a task.

Name Platform
Navigation
(Pan/tilt)

LoD Select Edit Colors
GIS
tools

LasViewer Toolbox
1 action

Cloud center
Point
budget

Point
Polygon

Yes Attributes No

Matlab PC
Viewer

Toolbox
1 action

Cloud center
No Point No

Attributes,
user defined

No

PCL Viewer Toolbox
Virtual globe
Cloud center

No Point No
Attributes,
user defined

No

Unreal point
cloud plugin

Toolbox
Virtual globe
Cloud center

Point
budget

Polygon Yes Attributes No

Potree Web
Virtual globe

Orbit
Octree

Polygon
Box

No Attributes Yes

Plas.io Web
Virtual globe
Cloud center

Decimate Point No Attributes Yes

Cloud
compare

Desktop
Virtual globe

Orbit
Octree

Point
Polygon

Yes Attributes Yes

Fugro Desktop
Virtual globe
Cloud center

Grid
Point

Transect
Yes Attributes Yes

Fusion-LDV Desktop
Virtual globe
Cloud center

No Polygon Yes Attributes Yes

Terrasolid Desktop
Mouse

2D actions
Grid

Decimate
Transect Yes Attributes Yes

Unity viewer Desktop
First-person
game action

Binary
tree

Point No Attributes No

3DReshaper Desktop
Virtual globe

Orbit
Point
budget

Point,
sphere, box

Yes Attributes Yes

Limon
Editor

Desktop
Mouse

2D actions
Point limit

Transect
Intensity

Yes Attributes Yes

Table 9.1: Comparative summary of reviewed point cloud viewers.

Most of the studied point cloud viewers and tools have several of the needed
features and some of them, like Cloud Compare or Fugro, have been considered
as possible alternatives. However, no one of them fits completely on the objec-
tives mentioned in the introduction, specifically for the needs of a lightweight 3D
editor with no input preprocessing requisites and a precise and 3D-wise point
selection method for ground truth generation purposes.

9.2 Megavisor: a custom point cloud viewer and
editor

In order to have a tool which fulfills all the prerequisites, a custom point cloud
viewer and editor is designed. The viewer must have, as a minimum:

� Ability to read and write LiDAR point clouds in .las format
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� Seamless visualization of tens of millions of points

� Camera controls in a virtual globe style

� Precise 3D point selection and reclasssification tools

� Point colors assigned via classification or intensity. Classification colors
should not be automatic but user-configurable.

� Possibility to hide undesirable point classes in the representation.

Two types of application have been considered for the viewer: a web ap-
plication based in Javascript and WebGL technologies, and a desktop platform
using C++, WxWidgets and OpenGL. The WebGL-based application has the
advantage of portability: it can be used in computers regardless of their operat-
ing system as well as in mobile devices. However, the main disadvantage comes
with the need of point cloud edition: dedicated servers are needed to upload the
input cloud, edit it and enable the download of the output results. As such an
infrastructure was not available, the desktop application alternative was chosen
instead.

The drawing primitive chosen to represent the cloud is the most simple one:
the point. When a view change event is triggered, the subset of points to be
shown is chosen according to a level of detail strategy and a single OpenGL
paint call is executed using the point primitive. Details about user interactions
with the point cloud, which trigger the above-mentioned events are provided in
the following subsections. The strategies for a level of detail representation and
the point selection and edition are also introduced.

9.2.1 Camera and navigation gestures

Three types of navigation gestures associated with mouse events have been
integrated in the viewer:

� zoom, which is triggered by a mouse wheel move and allows getting fur-
ther or closer to the point cloud.

� drag, which is associated with a continuous click of the mouse left button
and allows displacements through the scene while keeping fixed the view
direction.

� orbit, which is associated with a continuous click of the mouse right but-
ton and enables the change of the view direction both vertically and hor-
izontally.

In order to implement these three navigation controls, the first issue to solve
is how to initiate them in a discrete point cloud. A common approach in 3D
viewers and virtual globes is to find a reference point in the object, the pivot
point. The pivot point is computed in real coordinates, using as input the click
initial position in projected coordinates [33]. To do so, the click is used to
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extract the direction vector of a ray that starts in the current camera position,
and the object-ray intersection is computed to obtain the pivot point. That
point is after used as a reference to apply the desired transformation on the
3D object or on the camera. However, the intersection is not guaranteed to
be found due to the discrete nature of the cloud. Unexpected ray intersections
with the point cloud can also occur, e.g. when there are overlapping of points
in the rendered scene, leading to uncomfortable user interaction.

Figure 9.5: Pivot point estimation for the point cloud case. Two intersections
(in red) with respect to a bounding volume which encloses the entire cloud are
computed. The middle point on the segment between the intersection is taken
as the pivot point.

To solve that issue, it is possible to estimate a pivot point by using a bound-
ing volume of the cloud. With a bounding volume, the problem is reduced to
finding two intersection points, d = 0 and d = 1, between the ray and the
volume, as it is shown in Figure 9.5. From the ray segment defined by those
points, computing the middle point is straightforward. This middle point will
be the pivot point for the transformation. Finally, a particular case should be
taken into account in which the camera position is placed inside the bounding
volume. Only a ray intersection d = 1 can be found for such a case, so d = 0 is
assumed to be the camera position itself.

Once the pivot point is found, the transformation can be initiated. In the
following paragraphs, details about to the camera transformations needed for
each gesture are provided:

Zoom: For zooming, the ray direction to be applied is
−−→
OC, being O the

camera position and origin of the ray and C the position, converted to real
coordinates, of the cursor on the screen. This ray is used on the calculation of
the pivot point, P , commented previously. The ray enables the computation
of the new camera position, O′, as the result of the following expression: O′ =
O ± f · OP . There, f is a displacement factor, experimentally set to 0.1. Its
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sign, + o − , is to be determined by the movement of the mouse wheel onwards
or backwards.

Drag: The ray direction for the purposes of finding the pivot point P should

be the camera view direction,
−→
V . During all the drag interaction, the camera

position is updated according to the following expression:

O′ = O + dx · −→u + dy · −→v

where −→u and −→v are respectively the horizontal and vertical view vectors in
the projection plane, and the displacements dx and dy are computed in real
coordinates as:

dx =
OP

Znear
· −∆Xmouse

0.5 · YscreenPixels
· 0.5 · YscreenMeters

dy =
OP

Znear
· ∆Ymouse

0.5 · YscreenPixels
· 0.5 · YscreenMeters

in which Znear refers to the minimum distance between the camera and the
projection plane, in meters, and YscreenMeters is obtained from Znear and the
field of view (FoV) angle in the following manner:

YscreenMeters = 2 · tan(
FoV

2
) · Znear

Figure 9.6: Graphical definition of the FoV angle and the horizontal and vertical
view vectors.

Having the camera position, the center of the screen (projection plane) and
half the total height of the screen, the FoV angle is the relation between the
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three of them. A graphic definition of the FoV angle and the view vectors −→u
and −→v can be seen in Figure 9.6.

Orbit: This gesture is a combination of the pan (horizontal orbit) and the
tilt (vertical orbit) around the pivot point, P . The ray direction for the purposes

of finding P is
−−→
OC, analogous to the zoom case. During all the orbit interaction,

O and
−→
V will be updated according to the following expressions:

O′ = M ·O
−→
V ′ = M ·

−→
V

being M a transformation matrix composed of a translation to P , a rotation
of ry radians over the horizontal axis, −→u , a subsequent rotation of rx radians
over the vertical axis and a final translation opposed to the initial one, in that
order. The amounts ry and rx for rotation are defined based on the cursor
displacement during the orbit interaction, in the following manner:

rx = −∆Xmouse ·
2π

XscreenPixels

ry0 = −∆Ymouse ·
2π

XscreenPixels

ry = ry0, when ry0 + arccos
−→
V ·−→up
|
−→
V |·|−→up|

is in range [0, 2π3 ] , ry = 0 otherwise.

9.2.2 Level of detail scheme

Another problem to be solved is how to manage the visualization of point cloud
files with a potentially huge number of points: tens or hundreds of million
points. This problem is comparable to those presented in other point viewers
[229, 238], virtual globe applications and other 3D-oriented software [30]. The
common approach to solve this issue is to create progressive level of detail (LoD)
representations of the object to be displayed.

Most of the LoD representations require out-of-core processing and are based
on binary trees, kd-trees, quadtrees or octrees [22], which can be related to geo-
graphical or local coordinate systems. These structures enable an unlimited on-
demand load of point clouds with any size and extension from different sources,
being this fact their main strength. However, the generated structures could be
unbalanced if a point cloud presents density changes or a number of different
objects with multiple returns in a small area (e.g. a forestal area): This fact
can lead to obvious changes of the level of detail in the displayed scene: e.g. a
point area with an open area represented in full detail and a forestal zone repre-
sented with a coarser resolution, although both are close to the view. Moreover,
the tree generation stages are not practical for lightweight clients, as the one
proposed in the objectives of this chapter, where only a point cloud is visited
and edited at a given time. An in-core LoD structure based on grid volumes is
implemented instead.
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When a point cloud file is loaded, a 2D grid is generated so it covers the full
extent of the cloud. Their cells are volumes with a squared base of area SxS.
All the points in the point cloud are uniquely associated with a cell in the grid
according to their XY coordinates. The volume height is equal to the maximum
height difference between all the points enclosed in the volume. The choice of
the parameter S depends on the point cloud size, dimensions and density, so an
experiment is conducted and described in Section 9.3 to determine their ideal
size.

A check on the number of volumes to be drawn is conducted during a camera
update. In order to do so, the projected area of a minimum bounding sphere
that contains each volume is computed, as well as the distance d that separates
it from the camera. When that projected area is null due to the sphere being
out of the view volume, the grid volume is ignored. Otherwise, d is compared
against a minimum distance variable dmin, which is updated in case d is lower
than dmin. Initially, dmin is set to the distance Zfar between the camera and
the further view clipping plane.

For all the visible grid volumes, the amount of points to be displayed is
decided according to the following decimation factor:

fdecimate = 1 + (
farea
fpitch

· dmin)

This factor depends on the minimum distance dmin between the camera and
the visible volumes, as well as on a relation between two other factors:

� A painting area factor, farea = R
A , resulting from a division between

a reference area of painting, R, and the current canvas area A, both in
pixels. The factor looks for admitting a larger amount of points to be
painted on bigger screen sizes. As this factor depends on a reference area
parameter, R , another experiment is conducted in order to find the most
appropriate value for it whose results are exposed in Section 9.3.

� A pitch factor fpitch = N − (N − 1) · cos (pitch) which depends on the
pitch angle and an adjustable importance parameter, N . This factor is
introduced since the pitch affects the comprehension of the scene and thus
the amount of needed points. In an aerial view, with a pitch angle close to
0, the user only sees the upper part of the represented scene. Therefore,
only an amount of points enough to fill each grid cell in a regular manner
will be necessary. Adding more points in that situation only results in
cluttering and does not add any value. On the contrary, for a profile
view case, in which pitch angle is close to π

2 , it is desirable that the user
can identify the shape of the different objects in the scene, which normally
requires more points, but at the same time cluttering is expected in points
that have similar height (e.g: terrain). To find the best value of N for
all the cases, an experiment analogous to those made for S and R is also
conducted and introduced in Section 9.3.
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When a camera update event is triggered, one out of each fdecimate points
for each visible volume is rendered. Optionally, paint priority can be given to
user-defined classes of interest. In this case, decimation of points only affects
non-interesting classes and all the points in each visible volume that belong to
the classes of interest are painted.

9.2.3 Point selection scheme

A fourth type of user interaction is also implemented to allow the selection of
points. Its mechanics consist in choosing one of the three supported selection
modes and. After that, a drag interaction with the Shift key pressed generates a
rectangular frame. Points inside the frame are the target of a possible selection
based on the method of choice. The three implemented modes are rectangle,
box and centered box.

� Rectangle mode: it is analogous to the polygon mode used by viewers
such as CloudCompare or Unreal Point Cloud plugin. For each point in
the cloud, it is checked whether the point is ahead or behind the view
plane. If it is ahead, the point is discarded due to its invisibility. Oth-
erwise, the pixel coordinates corresponding with the point are computed
and compared with the chosen frame. If the point lies inside that polygon,
the point is selected.

� Box mode: The box mode is similar to the one implemented in the 3D-
Reshaper viewer and tries to limit the selection only to a short depth near
the frame in which the targeted object is placed. It differs from the box
method implemented in Potree in the fact that the depth is computed
automatically. The mode starts by finding the candidate points with the
rectangle mode algorithm, but additionally it stores the distances between
each candidate point and the plane of projection. The minimum of those
distances is taken as the reference to compute a box front plane. The
front plane is then cropped by calculating the intersections between the

plane and four rays with origin in O and direction
−−→
OF 1,..,4, being F1,..,4

the centers in local coordinates of each side of the selection frame. From
the cropped plane, the length of the shortest side is computed and used as
the box depth. Final selected points are those whose distance is inferior
to the sum of the minimum distance point-projection plane and the box
depth.

� Centered box mode: The original box mode has some unsolved issues
when points closer to the viewer than those to be selected are accidentally
introduced in the selection window, as it can be seen in Figure 9.7. To
solve them, the centered mode introduces an inner polygon of half the
size of the selection window and centered in the same place. By using the
same procedure, a box center plane is computed instead of a front plane.
Front and rear planes are calculated afterwards by adding and subtracting
the depth calculated using the shortest side of the frontal plane. The
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(a) Box mode (b) Centered box mode

(c) Polygon mode

Figure 9.7: Selection (white) of the points of a power pylon in a point cloud
for a selection rectangle which fits the pylon. The box mode worked in an
unexpected manner due to vegetation (red circle) which is closer to the viewer.
Polygon mode selects everything in the frame and the centered box mode adjusts
better the selection on to the power pylon.

final selected points are those inside the selection window whose distance
point-projection plane ranges between the distances with respect to the
projection plane of the front and rear planes.

The point selection criteria can be modified by the user in the panel of
visible and editable classes. As a default, all the classes of points are visible and
editable. When a point is marked as non-editable, it will not be selected any
longer. Non-visible classes cannot be neither rendered nor selected for edition.
An example of this panel and their effects is shown in Figure 9.8.

9.3 Tests and practical results

In this section, the experimentation regarding how to adjust the parameters
S for grid cell size, N for importance of the pitch angle and R for reference
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Figure 9.8: Edition and visibility panel of Megavisor over the scene of Figure 7.
Classes 13 to 18, referred to the inspected power line corridor, are visible (V) y
editable (E). The rest of classes (terrain, vegetation, buildings, etc) have been
marked as non-visible and are not rendered in the scene.

drawing area are introduced. The tests have been conducted over two different
LiDAR point clouds which represent sections of a power line corridor in a rural
environment. Their main characteristics are exposed in Table 9.2.

Cloud Points Length(X) Width (Y) Average density
Cloud 1 57.1 million 1780.86 m. 2916.59 m. 45.3 p/m2
Cloud 2 10.8 million 906.22 m. 497.77 m. 41.1 p/m2

Table 9.2: Main characteristics of the experimental point cloud dataset.

Per cloud, eleven different positions have been selected and the execution
time, the amount of points drawn and the screen difference between the full
cloud and the LoD strategy are studied in each one of the positions. Ten of
the positions are similar in both clouds, with eight 3D positions and two 2D
positions. Five positions are close to the rendered cloud and five positions are
placed afar. Finally, the eleventh position is chosen arbitrarily in each cloud,
showing a close object in detail with other objects in the background of the
scene. In Table 9.3, the defined positions and view directions are described. It
is considered for the positions that the largest dimension of the cloud equals to
the range [-1:1]. For some of such positions, including the two arbitrary ones,
their views can also be seen in Figures 9.9, 9.10 and 9.11. The results obtained
for each position have been averaged in order to have a general result for each
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(a) Cloud 1 (b) Cloud 2

Figure 9.9: Chosen view scenes for the position 11

(a) Cloud 1 (b) Cloud 2

Figure 9.10: Chosen view scenes for the position 1

cloud.
In order to conduct each test, only a parameter is changed while all the

others remain fixed (mono-objective optimization). Moreover, the canvas size
of the viewer is the same in all the experiments: 784x679 px. The machine
in which the tests have been done was a Mac Mini (late 2015 edition) with a
Windows 10 running over Bootcamp as the operating system.

9.3.1 Grid cell size, S

From the achieved results in both clouds, which are presented in Tables 9.4
and 9.5, it can be seen that the volume size has little impact on the execution
time. The average execution time of a frame was, for all cases in both clouds,
lower than the 16.66 ms needed to guarantee a fluid visualization of 60 FPS.
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(a) Cloud 1 (b) Cloud 2

Figure 9.11: Chosen view scenes for the position 9

Name Position View
Common 1 [1.5,0,0] [-1,0,0]
Common 2 [-1.5,0,0] [1,0,0]
Common 3 [0,1.5,0] [-1,0,0]
Common 4 [0,-1.5,0] [1,0,0]
Common 5 [0.5,0,0] [-1,0,0]
Common 6 [-1.5,0,0] [1,0,0]
Common 7 [0,0.5,0] [-1, 0, 0]
Common 8 [0,-0.5,0] [1, 0, 0]
Common 9 [0,1.632,0] [0.239,-0.97,-0.028]
Common 10 [0,0.632,0] [0.239,-0.97,-0.028]
11 - Cloud1 [-0.239,-0.018,-0.324] [0.879,-0.298,0.370]
11 - Cloud2 [0.115,0.008,0.138] [0.952,-0.189,-0.236]

Table 9.3: Normalized positions and view directions for each studied scene.

As expected, the number of points to be displayed grows as S grows, but the
increase only started to be really significant for cell sizes larger than 100 meters.

In terms of visual similarity, the closest similarity with respect to a full
visualization of the cloud without LoD techniques is achieved in Cloud 1 for 40
divisions of approximately 72 meters large. The shortest tested sizes of 64 and
58 meters have only slightly worse results, so it could also be considered as an
option. In Cloud 2, however, the closest similarity is found for the largest tested
size (20 divisions of approximately 45 meters large). This fact suggests that the
appropriate volume size is more dependent on the cloud density than on the
cloud extent and it should be the same for the two tested clouds regardless of
their dimensions: approximately 70 meters large for a cloud density of around
45 points per square meter.
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Longitude
(m)

Average
time (ms)

Average points
(thousands)

Average screen
diff. (kilo px.)

20 145.83 13.3 3031.7 15.78
25 116.66 12.8 2649.1 15.76
30 87.22 12.3 2585.6 15.21
35 83.33 12.3 2614.2 14.72
40 72.91 12.6 2548.7 14.20
45 64.81 12.3 2518.0 14.27
50 58.33 12.4 2481.3 14.23

Table 9.4: Results in terms of average time, number of points and screen differ-
ences for the different voxel sizes tested in Cloud 1.

Longitude
(m)

Average
time (ms)

Average points
(thousands)

Average screen
diff. (kilo px.)

20 45.31 7.4 2557.0 6.50
25 36.25 7.2 2414.1 7.07
30 30.21 7.1 2401.3 6.99
35 25.89 7.2 2355.7 6.79
40 22.66 7.2 2350.5 6.84
45 20.14 7.1 2345.1 6.64
50 18.12 7.1 2326.7 6.63

Table 9.5: Results in terms of average time, number of points and screen dif-
ferences for the different voxel sizes tested in Cloud 2. In both clouds, N = 20
and R = 3 Mpx is assumed.

9.3.2 Pitch importance factor, N

N
Average points

(thousands)
Average screen
diff. (kilo px.)

5 3438 7779
10 3068 8533
15 3039 8573
20 3029 8985
25 2976 8539
30 2938 9220
35 2929 8878

Table 9.6: Influence of the variation of the pitch importance factor, N, in the
amount of displayed points and the screen differences for Cloud 1.

The obtained results, which can be observed in Table 9.6 and 9.7, suggest
that the influence of N in the screen error is linear and it is convenient to
maintain this factor low (less or equal to N = 20) for minimizing this error. The
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N
Average points

(thousands)
Average screen
diff. (kilo px.)

5 2196 2018
10 2104 2157
15 2087 2018
20 2054 2069
25 2038 2311
30 2035 2505
35 2032 2453

Table 9.7: Influence of the variation of the pitch importance factor, N, in the
amount of displayed points and the screen differences for Cloud 2. For both
clouds, S=35 and R=3 Mpx have been assumed during this test.

variation in the amount of displayed points is opposed but tends to stabilize as
N increases. Hence, a compromise can be found between them by setting N in
values between 10 and 20.

9.3.3 Drawing reference area, R

R
(Mega px.)

Average points
(thousands)

Average screen
diff. (kilo px.)

1 2921 2634
1.5 2928 2440
2 2947 2442

2.5 3008 2412
3 3017 2069

3.5 3023 2206
4 3029 2131

Table 9.8: Influence of the parameter R over the amount of points to be rendered
and the screen differences in Cloud 1.

The results of the experiment, which can be seen in Tables 9.8 and 9.9, do
not show a great impact of R in the visualization. In Cloud 1, the minor screen
differences are observed for the lowest and the highest tested values (1 and 4
Mpx), with a peak between them. In the second cloud, the results point to an
inverse relation between the screen differences and the R parameter. For the
amount of points to be drawn, a linear increase is denoted as the R parameter
increases. According to this data, the best setting of R for the tested clouds
is R = 4 Mpx. This value provides a better visualization that compensates a
slightly worse amount of points to draw and execution time.
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R
(Mega px.)

Average points
(thousands)

Average screen
diff. (kilo px.)

1 2025 2634
1.5 2032 2440
2 2035 2442

2.5 2038 2412
3 2054 2069

3.5 2061 2206
4 2087 2131

Table 9.9: Influence of the parameter R over the amount of points to be rendered
and the screen differences in Cloud 2. For both clouds, S = 35 and N = 20
have been assumed.

9.4 Conclusions

In this chapter, a new lightweight point cloud viewer, Megavisor, has been
proposed. Virtual globe-like camera controls have been implemented in the
viewer with an adaptation to take into account the discrete nature of the point
cloud. To avoid preprocessing of the cloud prior to its visualization, and at the
same time ensuring a stable scene rendering time, a dynamic LoD strategy is
introduced. This strategy is based on the dynamic decimate of points inside a
grid of squared volumes. The decimation depends on three parameters, S, N
and R, whose settings are analyzed via experimentation.

Three modes for automatic selection of points inside a window chosen by the
user have been implemented: rectangle, box and centered box. The centered
box strategy is novel and it is an adaptation of the box strategy to better adjust
the selection to the object of choice, regardless of any undesired point closer
to the viewer which is projected inside the selection window. The rectangle
and box strategies are well known and introduced in other viewers of the state-
of-the-art but they present some issues in this particular aspect, respectively
selecting more and less points than expected.

From the experiments conducted over two different point clouds to determine
the best parameter settings for the LoD strategies, some initial conclusions have
been extracted. The first one is that the size of each volume should not be
adjusted based on the cloud extent but on their average density. The ideal size
of S resulted to be quite similar for two clouds with very different extent but
a similar point density. The parameter N has a linear influence on the amount
of points to be painted and in the visual similarity with respect to painting
the full cloud. For the tested clouds, the best option is to keep that parameter
in a range between N = 10 and N = 20. Lastly, it does not seem to be a
clear influence of R on the similarities between decimated and non-decimated
visualization. However, the best results have been achieved for a high value of
R, R = 4 Mpx.



Chapter 10

Conclusions and use cases

At the beginning of this dissertation, the main objective of the work was de-
fined as the proposition of new methodologies for the processing of large geo-
referenced vector data sets. These methodologies should be focused on the cre-
ation of structures that ease the selective and progressive transmission of such
data and improve the comprehension of the data by the user. The proposed
algorithms should explore the use of structures that allow different abstraction
levels of the data for their progressive visualization in any device. Moreover,
at least a streaming architecture adaptable for any desktop and mobile device
should be proposed to transmit the above-mentioned structures. Finally, the
preprocessing methods should be compared with other existing methodologies
whenever possible.

The way in which all these objectives have been addressed is described across
the different chapters of this document. In all of them, a review of the state of
the art in each covered topic is introduced, including the different alternatives
against our methodology can be compared with. The three main types of vector
data, points, lines and polygons, have been used in at least one methodology
during this research work. Several preprocessing techniques that generate LoD
structures or simplified 3D vector models from punctual data sets have been
elaborated. An architecture for the transmission of data based in one of such
LoD structures has been introduced as well. And finally, studies on finding the
best manner of present geo-referenced information have been performed. In the
following lines, the key contributions of this doctoral thesis are enumerated:

10.1 Contributions

Firstly, a pipeline has been introduced specifically for the generation of level
of detail structures from point datasets that contain potentially Earth-scale
information. Due to this particular requirement, the structure is designed based
on a quadtree associated to a regular grid of the planet (DGGS), instead of the
more common octrees, kd-trees and binary trees used for generation of LoD

189
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on point sets. To create the different levels of detail of the set, two strategies
have been used. One of them, the sorting, relies on a property of each point
used as sorting criteria to distribute the existing points on the parent nodes of
the quadtree. This strategy is oriented to progressive streaming, in which more
detail is added during navigation without creating any metadata. The second
strategy, clustering, generates a metadata which saves the existing amount of
points in a certain area of the map for coarse representations of the set. This
strategy slightly augments the number of data to stream but favours a clean
visualization of the data set.

Secondly, a server-client architecture capable of transmitting the previously
generated point data structures developed to mobile devices and displaying it as
marker symbols has been developed. The architecture requires: (i) a servlet for
reading the spatial database, (ii) API endpoints to request additional data, and
(iii) a mobile client capable of requesting data on demand during the navigation
and generating the symbology needed to represent the data. In order to develop
the client, an existing virtual globe engine, Glob3 Mobile, has been adapted to
include efficient marker rendering features. Moreover, an experimental study
has been conducted to determine the right amount of markers to be displayed
on screen necessary for the best understanding of the visualization. The results,
obtained for an open, global and large point data set and displayed on a mid-
range smartphone, suggest that the best choice is to cover approximately a 30%
of the screen with content. The quadtree node content should also be limited
to a maximum of 8 markers with text information.

The third contribution of this work also looks for achieving a better com-
prehension of the displayed data. It is a study which tries to determine the best
technique to show polyline sets representing underground pipe networks in a
virtual globe environment. Taking the state of the art and the Glob3 Mobile
engine as references, a distance-based α-blending was implemented and applied
to each pipe model. The distance of each pipe vertex to the camera determines
how transparent the pipe looks like. In this regard, eight different mathematical
functions have been tested for the diffumination effect. Additionally, a virtual
globe implementation of the excavation reference method was implemented, and
a novel visualization technology for underground data, the ditch, was introduced.
Ditches are semi cylindrical meshes designed to enclose a pipe. By combining
these meshes with an adequate texture, a trench effect which gives the desired
depth cues can be achieved. After a user experience survey, it was seen that the
method which gives the best depth hints in the test application was the exca-
vation feature, firstly, being closely followed by the α-blending technique with a
softsign transition function. The novel ditch visualization technique generates
variable sensations: it is quite easy to understand for technicians, but really
hard to comprehend for non-technical users. Nonetheless, the three tested tech-
niques outperform the most common reference method: the α-blending with
stable transparency value.

A fourth contribution was a methodology for the automatic generation of 3D
city building models from LiDAR point clouds and footprint polygons gathered
from the OSM open data set. The models generated for each building fol-
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lowed the CityGML standard, which considers progressive levels of detail. The
level 2 of this standard, which establishes individual polygons for ground, walls
and rooftop surfaces, is used for the representation. As any footprint on the
OSM dataset can contain one or multiple buildings, a first step in the proposed
pipeline aims to identify buildings inside each footprint and separate them when
necessary. For each separated building, a new footprint is generated by using a
novel corner-based line simplification algorithm. After that, the pipeline deter-
mines the category of the building rooftop from five possible options: flat, shed,
hipped ; pyramidal or complex. This is needed to generate the best simplification
for the rooftop model, and it is done via plane extraction and a rule system.
The rule system takes into account the number of planes found, their mutual
intersections and statistical variables obtained from the input points. An initial
method validation applied to a point cloud that represents a middle-sized city
showed promising results for the identification of the different building cate-
gories. Finally, the pipeline demonstrates its ability to reduce the volume of
data to represent the same content: the final CityGML city model sizes only
8.5% of the original cloud size.

The fifth contribution was a methodology for ground filtering in LiDAR
point clouds. This contribution has utilities on the generation of digital ele-
vation models and in works which require point segmentation. It introduces a
new concept, the patch, which is a cluster formed by points with local minimum
height in the cloud. Patch clusters are generated using hierarchical clustering
based on distance and a anisotropic filter to give extra relevance to the height
dimension. From each obtained patch, statistical descriptors are defined from
their points and raster maps of multi-scale features. Using these descriptors, a
decision tree is designed for determining whether the patch represents terrain.
Using the ground points classified with this decision tree, an algorithm is also
proposed to generate triangular regular meshes with progressively coarser reso-
lutions for its use as digital elevation models. The algorithm solves an equation
system to find the heights of each mesh vertex that best fit the input points. To
avoid extremely high maximum errors, a subsequent stage adjusts the vertices
that contribute more to the global error of the mesh. The proposed methodol-
ogy for ground filtering in point clouds was tested against multiple algorithms
from the state of the art in a well-known urban benchmark, obtaining the best
results from all the algorithms that use only the point cloud as input.

The sixth exposed contribution aims to find a semantic meaning for all the
non-ground points in a given point cloud. Using vehicle-borne LiDAR point
clouds as input, a non supervised pipeline was introduced to classify such points
into four categories: building, vegetation, poles and cars. To do so, an architec-
ture of progressive one-class detectors has been designed in which the input for
one detector is the output of the previous one. The detectors make use of raster
feature maps that are extracted from the points that fall in each map cell. Such
maps enable the determination of the areas of the cloud with potential for the
presence of poles and cars. Using clustering algorithms and extracting descrip-
tors from each cluster it is possible to confirm such presence of poles or cars.
The remaining points are grouped as well, and their categorization as building
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or vegetation is performed using a recursive algorithm for vertical plane extrac-
tion. The proposed pipeline was compared with neural network based methods
from the state of the art using a vehicle-borne LiDAR benchmark that repre-
sents urban scenes. The results showed that the progressive detection of classes
with a non-supervised approach is capable of outperforming all the tested neural
networks but one, demonstrating its competitiveness for point segmentation of
urban clouds.

Continuing this line of work, a seventh contribution is a proposal for the
classification and 3D modelling of power line corridor elements in LiDAR point
clouds. The preprocessing algorithm starts by searching the corridor in the
clouds, which is done via combinations of feature raster maps. Those feature
maps include local height, intensity and accumulation information. This search
returns as a result an initial classification of pylon and wire points, similar to
the one offered by most of the already existing algorithms for this particular
task. The pipeline continues by refining the classification in the areas in which
wires are tied to each pylon. Additionally, detectors are introduced for the
classification of subcategories of power elements: insulator strains, which are
subcategorized from pylons, and chains, shield wires and conductor wires, which
are subcategories of wires. These parts of the pipeline are implemented with
clustering algorithms and fitting of points to line equations. Taking into account
the previous state of the art, this contribution is the first one done for the
differentiation of such elements in LiDAR points, at least to the best of our
knowledge. Due to this, the comparison against other algorithms of the state
of the art has been done only in the general level. However, promising initial
results have also been exposed for the extraction of insulator strains and chains.

In this contribution it is also included an algorithm for the individual seg-
mentation of each wire and pylon present in the corridor and the generation
of 3D vector models for each one of them. The generated model for a single
conduct contains the four parameters needed to define a catenary curve in three
dimensions: an origin point o, two points representing the endings of the curve
and a torsion parameter a. o and a are computed using the PSO algorithm for
multivariable optimization, using the points of each conductor in the cloud as
input. The RMSE error margin of each model obtained this way achieves the
industrial requirements established for its use in diverse applications. Moreover,
a vector model is created for each pylon after an automatic identification of the
number and direction of all its arms. Obtaining these models allow an impor-
tant reduction of the volume of data necessary to represent the corridor in any
viewer. As an example, the three points and the torsion value of a catenary
can be sent instead of the hundreds or thousands of points in which the same
conductor is represented in the original cloud. Using those four parameters, the
catenary can be represented in any level of detail as it only requires to divide the
length of the curve in the desired amount of points. An identical solution can be
followed for the pole and the arms of a pylon in coarse representations, as they
are reduced to a vertical line and n horizontal lines. Finally, the models can
be exploited as-is for subsequent anomaly calculations and periodical corridor
maintenance tasks.
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In order to use noise-affected point clouds for all the previously commented
processing tasks, an eighth contribution is done. It identifies up to seven differ-
ent noise schemes that appear in point clouds according to their visual appear-
ances. After this identification, a parallel processing methodology is introduced
for the separate filtering of each noise scheme. In order to stabilize the execution
time, the cloud is split into slices. The filtering process is performed in each
detector by using clustering processes and descriptors based on the intensity,
the spatial position and the distance between each point and the LiDAR sensor.
The partial results of each detector are unified into a single noise classification.
Finally, a new benchmark that contains 20 noise-affected point clouds has been
made open for the public, and the validation has been done using it. The ob-
tained results were promising and demonstrated the usefulness of this proposal
for noise filtering in point clouds.

And the ninth and last contribution introduced in this doctoral thesis was a
lightweight viewer for point clouds. It surged as a response for the needs of the
daily work on the rest of the exposed contributions. Navigation controls adapted
for point clouds have been introduced, as well as three methods for selection
of points in 3D scenes. One of them, the centered box, is novel. Additionally,
a LoD scheme was integrated for a seamless and on-demand rendering of the
cloud. The scheme is based on a regular grid instead of an octree, as well as
it was decided in the marker case. However, as no network functionalities have
been required, the coarser representations are being generated on the client via
decimation applied in the grid cells. The decimation function takes into account
the grid cell size, the pitch angle and a reference screen area to add or remove
detail on the scene. Experimentation conducted shows more similarities with
respect to a non-decimated visualization when the grid cell size is chosen based
on the cloud density, the reference screen area is greater and the parameter
which regulates the importance of the pitch angle is kept in a stable range.

To summarize, as a result of this research work the following items have been
accomplished:

� Two novel strategies for the generation of level of detail structures on
point datasets and digital elevation models.

� Two novel strategies for the generation of reduced 3D vector models from
point clouds, with applications on smart cities and power line inspection.

� Four novel and different methodologies for the segmentation in categories
of large volumes of data in the form of point clouds. Such categories relate
to ground, urban elements, power line elements and noise, respectively.

� An architecture for the progressive streaming of quadtree-based structured
point data into virtual globe mobile applications.

� Three studies which analyze the best ways to display geo-referenced in-
formation to a user in the form of markers, pipeline networks and point
clouds.
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Finally, the majority of the here exposed contributions were successfully
transferred into diverse applications designed for tourism, educational, research
and industrial purposes. Those transferences are detailed in the use cases sec-
tion that the reader will find immediately after this paragraph. With these
transferences, the objectives defined at the beginning of this research work have
been, on our point of view, accomplished.

10.2 Use cases

All the research work exposed in this dissertation has been done so the generated
knowledge could be easily transferable to companies and entities and be useful
for the society. In this section, the different use cases in which such a trans-
ference has been made are commented. Transferences were possible thanks to
different collaborations between the university and a company or a public entity
in which I have the chance of participate in.

10.2.1 Explora Gran Canaria

Explora Gran Canaria [241] is a project which comes from a collaboration be-
tween the Universidad de Las Palmas de Gran Canaria, the local authorities
of the island of Gran Canaria (Cabildo de Gran Canaria) and the software
company Singular Factory. Its objective is to publicize the nature of Gran Ca-
naria by proposing hiking routes and a series of associated sensorial experiencies
to the visitors of the island. Such experiencies go from seeing the impressive
landscapes of the islands from a viewpoint to test a typical canarian dish in
restaurant. They also include knowing the geologic and etnographic history of
the island or experience the smells of the endemic flora and the sounds from the
surrounding local fauna.

Figure 10.1: Hiking route (blue line) and points of interest displayed on the
virtual globe interface of Explora Gran Canaria

The result of this project is a social application for web and mobile (An-
droid/iOS) platforms. The hiking and experience recommendations are gener-
ated by a recommender system [242] based on preferences extracted from the
user profile. The user can let be carried away by the recommendation or choose
his own route. The application shows the full hiking path in a 3D scenario, offers
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technical, geologic, and historic information and display different points of in-
terest in the route, at it can be seen in Figure 10.1. For the mobile versions, the
app also gathers your location and displays it in the scene. This way, following
the path becomes easy and the hiker can relax and enjoy the experience.

The app Explora Gran Canaria relies on the Glob3Mobile framework for the
visualization of the hiking path and the points of interest. In this sense, the
transferred contribution from this research work to the project is the module for
an efficient transmission and visualization of point markers avoiding cluttering,
shown in Chapter 2. The raw point of interest data set containing positions,
names and icons was preprocessed so a LoD wise spatial database is generated.
The data is then visualized using the client proposed in the chapter. As the
marker viewer was developed as a part the Glob3Mobile engine, the integration
with the rest of the application features is straightforward.

10.2.2 SmartPort

The SmartPort project [243] surges from a collaboration from the Universi-
dad de Las Palmas de Gran Canaria and the city port authorities Autoridad
Portuaria de Las Palmas within the context of the FIWARE program of the
European Commission. In the SmartPort project, a distributed architecture is
designed for the continuous collection of spatial data from various sensors placed
in the seaport of Las Palmas de Gran Canaria. A web application has also been
developed in order to ease the management of the daily tasks of the seaport
based on the collected information.

Figure 10.2: A 3D model representing a sensor and some restaurant related
point markers shown in the SmartPort web application.

The web interface of SmartPort offers all the information in the context of
a 3D scenario of the seaport area. The different sensors, the active vessels in
the port and all the monitored containers and cranes are shown in the scene
represented as 3D models. The positions and additional data of the vessels are
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updated every few minutes by using the AIS standard [244]. For the rest of the
sensors, queries to the SmartPort platform are performed on demand.

SmartPort allows the port management staff to use such information to gen-
erate and show graphs and statistics about the port. A fuzzy logic based alarm
system is also implemented. Additionally, cartographic and point of interest in-
formation about the island of Gran Canaria are offered in the web application,
as it can be seen in Figure 10.2.

The web interface relies on the Glob3 Mobile framework for the visualization
of all the required spatial data. In this sense, the contribution of this thesis to
this project is analogous to the one on the Explora Gran Canaria application.
The system for an efficient transmission and visualization of point dataset pre-
sented in 2 has been integrated in SmartPort to manage the point of interest
database.

10.2.3 Epigraphia3D

Figure 10.3: Point markers representing archaeological sites from the ancient
Emerita Augusta where epigraphies have been found, over a map of the current
city of Mérida (Extremadura, Spain) generated with Glob3Mobile.

Epigraphia3D is a project from the Spanish Government, the Spanish Na-
tional Archeological Museum (Museo Arqueológico Nacional) and the Spanish
National Museum for Roman Art (Museo Nacional de Arte Romano). It looks
for making the ancient inscriptions of the Roman civilization discovered in Spain,
called epigraphies, better known for the general public. In this project, the Uni-
versidad de Las Palmas de Gran Canaria collaborates in the 3D model genera-
tion of each epigraphy and in the design and development of an Android mobile
application which work as a digital museum. The application aims to display
the models, explain their meaning, history and details and show the places in
which they are discovered.
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The mobile application was developed using the Glob3Mobile framework
[245]. It becomes the third practical use example for the system for efficient
and cluttering-free transmission and visualization of point markers exposed in
Chapter 2. For this case, the data set displayed with the system is the location
of all the different places in which epigraphies have been found, which is shown
in Figure 10.3.

10.2.4 Eifer MultiVis

(a) Heat demand by building. (b) Underground gas, water and energy net-
works.

Figure 10.4: Spatial data regarding the city of Karlsruhe presented in the Mul-
tiVis mobile application.

MultiVis [62, 75] is a multi-modal mobile application for Android and iOS
developed in the context of the Smart City Lab project of the European Institute
of Energy Research (Eifer). It aims to showcase the results of different models
and simulations regarding energy and smart cities. The application allows a
seamless and smooth transition between a classic map environment, virtual
reality and augmented reality. This multi-modal design allows technicians to
take the key decisions about the planning of a city on the field, with a mobile
phone and without any hardware requirements.
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The application uses as an example case the German city of Karlsruhe. Over
a map of the city, different spatial data sets are loaded containing 3D building
models in CityGML format, solar radiation data, heat and energy consumption
(see Figure 10.4 - a) or solar energy generation potential, among others. The
implementation of the three scene models relies on Glob3Mobile and the native
camera and positioning frameworks of Android and iOS.

Most of the MultiVis features have been implemented prior to the start of
this research work [34]. However, the module for the representation of under-
ground network data exposed in Chapter 3 was transferred to this project as a
new feature for the application. The application gathers the locations, diame-
ters and types of each pipe in CityGML from a 3DCityDB database, the same
that contains the building models. The module generates the appropriate mesh
for each pipe and displays it in the preferred mode from those exposed in the
chapter: with dynamic distance-based alpha blending (Figure 10.4 - b), along
with a surrounding ditch model or inside an excavation.

10.2.5 Aerolaser LiDAR classifier

Aerolaser System is a company based in Las Palmas de Gran Canaria specialized
in acquisition and processing of geo-referenced data. One of its lines of work is
the inspection of low, mid and high voltage power lines for maintenance tasks.
At the present time, up to 60000 Km. of lines are monitored by the company
with the help of LiDAR sensors, RGB cameras and thermal infrared cameras.

This results on very large volumes of point cloud data which should be pro-
cessed in order to find the lines and all the near objects that could affect the
power service. In this regard, a collaboration with the Universidad de Las Pal-
mas de Gran Canaria has been opened and it is still active nowadays. The main
goal of the collaboration is the automation of all the post-processing task of the
LiDAR data acquired during an inspection flight. As a part of this collabora-
tion, several different projects have been opened and knowledge generated in
this research work has been successfully transferred to all of them.

The first of those projects involves the design and development of an airborne
LiDAR point cloud semantic classifier. The classifier should be customizable for
different needs of the company and should identify, at least, points belonging
to the categories ground, vegetation, building, project pylon, insulator strain,
project wire, shield wire, bridge chain, cross line pylon, and cross line wire. In
order to difference between project and cross line corridors, a corridor poly line
is available. The classifier modifies the input point cloud, attaching the result
of the point segmentation class to each point record.

The executable developed for the project includes a full implementation of
the Patch Decision Tree exposed in Chapter 5 of this dissertation for ground
detection. It also includes a full implementation of the method for detection
and refinement of power line corridor classes in airborne LiDAR point clouds
exposed in Chapter 7 to perform classification of pylon, wire, insulator strain
and bridge chain classes.

In Chapter 6, a method for detection of building and vegetation classes,
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Figure 10.5: Example of the LiDAR classifier configuration file.

among others, in vehicle-borne LiDAR clouds has been introduced. Those clouds
have conditions different from the airborne clouds [170], However, the feature
maps explored in that chapter regarding relative height, point accumulation,
omnivariance, eigensum and planarity are still valid for prediction and have
been re-utilized in this project. Additional linearity [158], average return and
presence of non-ground patch maps have been included as new feature maps.
Using a ground truth generated by experts of the company, a random forest
based grid classifier has been trained to distinguish the remaining points between
the two affected classes. This allows to fulfill the minimum requirements of the
application.

Figure 10.6: Execution progress of the LiDAR classificator over an input point
cloud.

The classifier allows the user to set the class values and the batch execution
of multiple point clouds. A configuration file example can be seen in Figure
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10.5, an example of execution flow can be seen in Figure 10.6 and an example of
the final result can be seen in Figure 10.7. Future steps of this ongoing project
include research on roads, poles and car classes, between others.

Figure 10.7: LiDAR Classificator output. Ground (brown), vegetation (green),
building (red), primary wires (magenta), shield wires (orange) and pylon (blue)
can be appreciated.

10.2.6 Aerolaser LiDAR digitizer and incidence detector

The second of the projects opened as a result of the collaboration between the
Universidad de Las Palmas de Gran Canaria and Aerolaser System involves the
design and development of a digitizer software. The digitizer should be able to
extract vector catenary models for all the primary and shield wires and for all
the bridge chains, given a power line corridor. Additionally, it should generate
vector models of each pylon of the studied corridor. The generation should be
start from previously classified point clouds.

The software created for such a task benefits from the modelling procedures
for such elements that are introduced in Chapter 7. The program is capable of
sequentially reading corridor data composed of multiple point clouds, extracting
the models and saving them into a unique vector data set. This data set is finally
save in the privative .dxf format to ease the integration of this tool with the
company workflow. An example can be seen in Figure 10.8.

Combining the catenary models and the classified point clouds, a prototype
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Figure 10.8: Example of digitization of a power line corredor in .dxf format.

is also implemented for the detection of possible incidences near the power line.
To perform this task, the incidence tests introduced in Chapter 7 have been
followed.

Figure 10.9: Tree incident points (red) which can be reach by some catenaries
(blue) in a power line corridor. Grey colour indicates non-affected points.

An example of incidence points detection given by this prototype can be
shown in Figure 10.9. More examples are available in a demonstrative video 1.
This prototype is still being developed in the moment of writing of this section,
being the inclusion of changes in the catenary model according to estimated
wind direction and temperature the future roadmap for this project.

10.2.7 Aerolaser LiDAR noise filtering tool

Finally, a third transference of knowledge from this research work was done in
another project opened in the collaboration between the Universidad de Las

1https://www.youtube.com/watch?v=3itb-XFyWGE
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Palmas de Gran Canaria and Aerolaser System. The project consist in a noise
filtering software for airborne LiDAR point clouds, which is a task which is still
dependent on human operators. As well as in the classifier case, the generated
software should accept batch modes and the possibility of changing the noise
classification values.

Figure 10.10: Example of a noise filtering configuration file.

For this project, a full implementation of all the noise detectors discussed in
Chapter 8 has been done. The operator should provide the input point clouds
and, when necessary, the acquisition flight data. The detectors to be explored
in each run of the final executable are also configurable, as it can be seen on
Figure 10.10. As a final output, the noise classification is saved in each affected
point data record of the original point cloud and optionally saved in a new file.

10.3 Future lines of work

The topics covered in this document are just a drop in the ocean of topics
regarding spatial data prone to further research. Moreover, the contributions
here presented also opened new lines of future work in the field of spatial data
processing. In the following lines, some possible extensions to this work are
highlighted.

� Regarding the quadtree-based level of detail structure for point sets and
the architecture for vector data transmission, a natural continuation of the
work is to adapt the methodology for the inclusion of line and polygon
sets. The challenge of such a continuation comes on how to proceed on
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node splitting when the division directly affects a line or a polygonal edge.
Possible options are to take advantage of the sorting criteria to relate larger
lines and polygons with coarser levels of detail, or to generate sub-lines
in case the node division affects a line. Additionally, different strategies
for node generation can be considered, e.g. splitting nodes based on the
centroid of their related points instead of using the regular geographic
criteria.

� Improvements on the topic of underground data visualization are also an
interesting continuation of this work. On this matter, an open question is
how changing the looks of the ditch and the excavation can affect the com-
prehension of the operator on the displayed data. Another possibility is to
design the underground data display throughout cartographic principles,
which have been proven to be effective for other types of mapping-oriented
visualizations. Those new proposals should be validated by performing
new user experience surveys before their adoptions. Moreover, the cre-
ation of new user interactions specific for underground data could also be
welcome. A possibility on this line may be to implement a gesture for
expanding and shrinking the size of the excavation. Finally, the addition
of detail on the underground models generated for these visualizations can
make them more suitable for VR/AR scenarios, where the user should be
offered a complete immersive experience.

� In the topic of the 3D city model generation from LiDAR data, several
lines of continuation can also be followed. One of them is to find rules
which improve the prediction of pyramidal rooftops and the addition of
new categories of rooftops within the system. For this objective, the ad-
dition of other data associated with each point, such as intensity, color or
return values to the rule system may benefit the identification. The use
of supervised techniques might ease this task as well. Another possibil-
ity consists in combining this work with the ideas proposed for building
segmentation in urban clouds presented in Chapter 6 and the use cases
section. After classifying the cloud, the corner-based algorithm for foot-
print generation can be applied directly to every building area found in the
cloud, thus making the OSM input unnecessary. Other lines are related to
the validation of the rooftop classification procedure: it can be extended
to other cities, different LiDAR benchmarks and different point densities.
A comparison against other methodologies from the state of the art is also
desirable. A last future continuation of this work consists in analyzing
the resulting model with the input data to ensure the topological correct-
ness of the output, and applying corrections on the model generation if
it becomes necessary. Having accurate building models is key in order
to exploit the city model in smart city and energy oriented applications.
Those applications can include simulations of heating and cooling needs,
energy consumption, solar radiation and potential for photo-voltaic energy
generation. Accurate models can also be used for visualization purposes
in virtual globe applications, augmented reality and virtual reality.
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� About ground classification and DEM generation, there are also open
lines of potential work. From the comparison with methodologies from
the state of the art, it was observed that color information benefits the
ground classification and the approaches which exploit color outperform
those which do not use it. A straightforward manner to continue is by
studying how to integrate color in the patch decision tree. Additionally,
slope cues can be considered in order to correct some misclassifications in
mountainous terrain. Finally, a GPU version of the proposal on triangular
regular network generation may be implemented, as it is mainly based on
large matrix and vector operations.

� Regarding point segmentation in general, multiple continuations can be
explored as well. One of them involves differentiation of subcategories
on each of the proposed categories. As an example, ground classification
can be divided into bare terrain, grass areas, roads and pavement, etc.
Having these subcategories of ground, it is possible to introduce cues for
better segmentation of cars and poles, as they normally are on or close to
roads and paved surfaces. Another example is the vegetation, in which by
combining the LiDAR data with RGB or infrared color features it might
be possible to differentiate between multiple tree and crop species. This
algorithm may be of interest on land use and land cover studies. It also
may help the time estimation for future power line maintenance tasks, as
each tree species has a known growth rate.

� Another possibility is to explore new features and architectures for the
prediction of the already considered categories. It was seen in Chapter 6
that each of the different approaches applied to the Street3D benchmark,
including our P4UCC proposal, explored very different descriptors and
several learning-based and unsupervised architectures. Despite that, all
the methodologies introduced improvements on the state-of-the-art. An
open question is whether combining descriptors from different approaches
has positive effects on the prediction. Another possibility is to introduce
the progressive, class-by-class approach of the P4UCC methodology in a
supervised architecture and, again, checks whether it benefits the predic-
tion. This line of work can be extended not only to the pole, car, vegetation
and building categories but also for power line and noise classification.

� An additional and interesting future combination of the work made in
Chapters 7 and 9 about power corridor modelling and point cloud visual-
ization is to display the vector models in the point cloud viewer, introduce
different hypotheses of catenary movement and generate a relation of af-
fected areas in the point cloud due to such a movement. In this regard,
an initial Matlab prototype for the calculation of affected points has been
introduced in the use cases section. By including this implementation into
the viewer, the user may introduce in an easier manner the climate con-
ditions on the wire, which are the key variables in the wire deformation
and movement. This opens the possibility of instantaneously calculating
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the new model position, showing it on the screen, generating alerts on the
viewer for each affected point and generating an incidence report for the
maintenance technicians.

� Finally, a new knowledge transference is also expected to be done in the
near future, combining the work made in Chapters 2 and 9. The project,
which will be included in the collaboration agreement between Aerolaser
System and the ULPGC, aims to extend the capabilities of the Megavi-
sor LiDAR viewer so country-sized point cloud repositories can be down-
loaded, displayed and edited efficiently. The quadtree-based point struc-
tures introduced in Chapter 2 will be used to progressively load the points
of the repository in the scenario in a flawless manner. These structures
should also be extended and adapted to load extra information about the
scene, as color and thermal imagery or vector models of the power ele-
ments. A user interface will be also included to ease the common operator
task, including tools for distance, area and volume measurement, config-
urable application of the noise removal, point segmentation and incidence
report generation algorithms exposed in this work.
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Annex I: Standard quality
measurements

In this annex, the standard and common concepts that have been applied for the
validation of all the methodologies that involve classification and point clouds
are presented for a better understanding.

Confusion matrix, true and false positives-negatives

A confusion matrix, also called error matrix, is a table that relates the real
data with the predictions performed by a given methodology on the data. Its
use is extended in the fields of statistical classification and machine learning. In
a confusion matrix, the sum of each row gives the total elements of a real class,
and the sum of each column gives the total predictions made for a class.

If the order of classes in rows and columns is the same, the main diagonal of
the matrix will offer the correct predictions of the methodology on each class,
and the rest of elements of the matrix will offer the misclassification. Considering
a sole class, four concepts are introduced on this regard for a better analysis:

Figure 10.11: A confusion matrix example.

� True positives (TP), which are the correct predictions for the class;

� True negatives (TN), which are the correct rejections for the class;
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� False positives (FP), also called Type I errors, which are erroneous pre-
dictions for the class;

� and False negatives (FN), also called Type II errors, which are missed
predictions for the class.

In Figure 10.11, the concepts of confusion matrix, TP, TN, FP and FN can
be seen graphically.

Recall
Also called completeness or sensitivity, it is the fraction of correctly classified

elements in the total of elements of a given real class. It can be calculated
following the expression:

recall =
TP

TP + FN

Precision
Also called correctness, it is the fraction of correctly classified elements in

the total of predictions of a class. It can be calculated following the expression:

precision =
TP

TP + FP

F1-score
It is a harmonic mean of recall and precision and it offers a single score to

evaluate the performance of the classifier, in which the two types of error have
influence. It can be calculated following the expression:

F1 =
2

1
recall + 1

precision

IoU-score
The Intersection over Union (IoU) score was designed for experiments in

the computer vision field and originally related the overlapping area with the
combined area between two bounding boxes. Recently, it was adapted for ma-
chine learning as an alternative score for classification which takes into account
the two types of error. It can be calculated following the expression:

IoU =
TP

TP + FP + FN

Overall accuracy
The overall accuracy is a metric which considers all class predictions instead

of a unique class and gives the general proportion of hits with respect to the
total of elements in the dataset. It can be calculated following the expression:
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OverallAccuracy =
TP + TN

TP + FP + TN + FN

Mean of IoU
Finally, the mean of IoU is an alternative measure for the global performance

of a multi-class prediction methodology. It consists in averaging all the single
class IoU indicators.
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Annex II: Scientific
publications.

In this annex, the main scientific publications generated during the doctoral
thesis are enumerated, as well as additional papers in which transferences of
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� Jaisiel Santana, Sebastián Ortega, José Miguel Santana, Agust́ın Trujillo,
José Pablo Suárez: Noise reduction automation of liDAR point
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jillo, José Pablo Suárez, Jaisiel Santana, Alejandro Sánchez, Conrado
Domı́nguez: Web-based GIS through a big data open source com-
puter architecture for real time monitoring sensors of a seaport.
In: The Rise of Big Spatial Data (pp. 41-53). Springer, Cham. (2017)
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shapes”. In: ACM Transactions on Graphics (TOG) 13.1 (1994), pp. 43–
72.

[205] Ting On Chan, Derek D Lichti, and Craig L Glennie. “Multi-feature
based boresight self-calibration of a terrestrial mobile mapping system”.
In: ISPRS journal of photogrammetry and remote sensing 82 (2013),
pp. 112–124.

[206] Russell Eberhart and James Kennedy. “A new optimizer using particle
swarm theory”. In: Micro Machine and Human Science, 1995. MHS’95.,
Proceedings of the Sixth International Symposium on. IEEE. 1995, pp. 39–
43.

[207] Radu Bogdan Rusu et al. “Towards 3D point cloud based object maps for
household environments”. In: Robotics and Autonomous Systems 56.11
(2008), pp. 927–941.

[208] Ian Jolliffe. Principal component analysis. Springer, 2011.

[209] J Li, Wei Gong, and Y Ma. “Atmospheric lidar noise reduction based on
ensemble empirical mode decomposition”. In: Int Arch Photogr Remote
Sensing Spatial Inf Sci (2012), pp. 127–129.

[210] A Ullrich and M Pfennigbauer. “Noisy lidar point clouds: impact on
information extraction in high-precision lidar surveying”. In: Laser Radar
Technology and Applications XXIII. Vol. 10636. International Society for
Optics and Photonics. 2018, p. 106360M.

[211] ES Ferdinandov, VI Tsanev, and BO Todorov. “Turbulence-noise in in-
frared lidar sensing”. In: Infrared Physics & Technology 36.1 (1995),
pp. 105–111.

[212] MultiMedia LLC. MS Windows NT Kernel Description. 1999. url: http:
//web.archive.org/web/20080207010024/http://www.808multimedia.

com/winnt/kernel.htm (visited on 09/30/2010).

[213] Somkiat Lerkvarnyu, K Deijhan, and F Cheevasuvit. “Moving average
method for time series lidar data”. In: Available: http//www. gisdevelop-
ment. net/aars/acrs/1998/ps3016. shtml (1998).



BIBLIOGRAPHY 233

[214] Hai-Tao Fang and De-Shuang Huang. “Noise reduction in lidar signal
based on discrete wavelet transform”. In: Optics Communications 233.1-
3 (2004), pp. 67–76.

[215] TS Reddy et al. “Noise reduction in LIDAR signal using wavelets”. In:
International Journal of Engineering and Technology 2.1 (2009), pp. 21–
28.

[216] M Sarvani, K Raghunath, and S Vijaya Bhaskara Rao. “Lidar signal
denoising methods-application to NARL Rayleigh lidar”. In: Journal of
Optics 44.2 (2015), pp. 164–171.

[217] Xuezhen Qin and Jiandong Mao. “Noise reduction for lidar returns using
self-adaptive wavelet neural network”. In: Optical Review 24.3 (2017),
pp. 416–427.

[218] Carla Nardinocchi, Gianfranco Forlani, and Primo Zingaretti. “Classi-
fication and filtering of laser data”. In: International Archives of Pho-
togrammetry and Remote Sensing 34.3/W13 (2003).

[219] Rodrigo AA Nobrega, Jose A Quintanilha, and Charles G O’Hara. “A
noise-removal approach for Lidar intensity images using anisotropic dif-
fusion filtering to preserve object shape characteristics”. In: Proceedings
of the ASPRS 2007 Annual Conference. 2007.

[220] Huang Zuowei, Huang Yuanjiang, and Huang Jie. “A method for noise
removal of lidar point clouds”. In: 2013 Third International Conference
on Intelligent System Design and Engineering Applications. IEEE. 2013,
pp. 104–107.

[221] Xuelian Cheng et al. “Noise-Aware Unsupervised Deep Lidar-Stereo Fu-
sion”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 6339–6348.

[222] Jaisiel Santana et al. “Noise reduction automation of liDAR point clouds
for modeling and representation of high voltage lines in a 3D virtual
globe”. In:

[223] Yue Gao et al. “3-D object retrieval with Hausdorff distance learning”.
In: IEEE Transactions on industrial electronics 61.4 (2013), pp. 2088–
2098.

[224] Rapidlasso GmbH. LasTools. 2020. url: https://rapidlasso.com/

lastools/ (visited on 06/02/2020).

[225] The Mathworks Company. Lidar and Point Cloud Processing. 2020. url:
https://es.mathworks.com/help/vision/lidar-and-point-cloud-

processing.html (visited on 06/02/2020).

[226] Bogdan Radu Rusu and Steve Cousins. PCL: Point Cloud Library. 2020.
url: https://pointclouds.org/ (visited on 06/02/2020).

[227] Bogdan Radu Rusu and Steve Cousins. “3D is here: Point Cloud Library
(PCL)”. In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China, May 2011.



234 BIBLIOGRAPHY

[228] Epic Games. Unreal Engine - LiDAR Point Cloud Plugin. 2020. url:
https://docs.unrealengine.com/en-US/Engine/Content/index.

html (visited on 06/02/2020).
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