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Triangular phase-shift detector for drone precise
vertical landing RF systems
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Abstract—This paper presents a circuit for precise vertical
landing of drones based on a three phase-shifts detection of
a single frequency transmitted from the landing point. The
circuit can be considered as a new navigation sensor that assists
in guidance corrections for landing at a specific point. The
circuit has three inputs to which the signal transmitted from
an oscillator located at the landing point arrives with different
delays. The input signals are combined in pairs in each of
the three analog phase detectors, after having passed through
3 dB@90o hybrid couplers that guarantee a theoretical non-
ambiguous phase-shift range of ±90o. Each output has a voltage
that is proportional to the phase-shift between each of the input
signals, which in turn depend on the position relative to the
landing point. A simple landing algorithm based on phase-shift
values is proposed, which could be integrated into the same
flight control platform, thus avoiding the need to add additional
processing components. To demonstrate the feasibility of the
proposed design, a triangular phase-shift detector prototype has
been implemented using commercial devices. Calibration and
measurements at 2.46 GHz show a dynamic range of 30 dB and a
non-ambiguous detection range of ±80o in the worst cases. Those
specs let us to track the drone during the landing maneuver in
an inverted cone formed by a surface with a ±4.19 m radius at
10m high and the landing point.

Index Terms—drones, multi-rotor, precise landing, phase de-
tector, vertical landing.

I. INTRODUCTION

PRECISE point landing is required by many drone appli-
cations (multi-rotors) with autonomous operation: mobile

platforms, recharging systems, small enclosures with auto-
mated open/close gates where they are stored and protected
from adverse environmental conditions, etc. This maneuver
is one of the most complex, even worse when it is done
autonomously, since it requires large volumes of data to make
corrections quickly and accurately [1]. The difficulty increases
when it is done outdoors since aspects related to visibility
(global/local positioning systems, targets, etc.), type of terrain,
air turbulence, etc. must be considered. Outdoor systems are
also exposed to interference which makes the problem more
difficult, as complex processing is required [2]. Solutions
based on GPS positioning and image processing are the most
used. Systems based on pattern image processing located at
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landing point could solve the problem in adverse conditions
but would require a powerful computer platform to provide
sufficient ODR (Output Data Rate) to correct the trajectory
[3], [4]. Especially critical are the landing approach maneuvers
when it comes to recharge systems where the drone must be
placed on certain connection points [5] and with a certain
alignment [6], even worse when it is the drone that acts
to recharge other systems [7]. These maneuvers usually use
systems based on satellite positioning and image processing
(targets) that can be combined with mobile platforms that al-
low the adjustment of the recharge system [8], allowing greater
error tolerance over the landing point. To avoid mechanical
systems and improve inductive charging efficiency, solutions
using a double inductive ring [9] have been proposed.

RF (Radio Frequency) systems that provide positions to
vehicles, need to locate reference stations to perform triangu-
lation (GPS, radio beacons, etc.). These solutions can improve
resolution from phase information and be used for precision
landings [10]–[12]. Phase-shift has also been used in precision
mechanical positioning control [13]. However, they present
problems when the vehicle is operating in a terrain with abrupt
orography and especially if there are abundant trees that absorb
the signal the higher the frequency [14]–[16].

The autonomous landing requires more data for higher
intensities of turbulence in the approach, as well as data
from the inertial system in relation to the stabilization of
the drone when it is suspended in the air. In fact, inertial
systems can have ODR in the order of 100 corrections per
second [17]–[19], while image processing corrections are
running at best 30 corrections per second but usually not more
than 10 corrections per second [3], [4]. Therefore, a system
based on image processing is not the most suitable in these
conditions. Even under better conditions, an RTK (Real Time
Kinematic) system would not be suitable either since they have
a low position data rate [10], [11], as with systems based on
FMCW (Frequency Modulated Continuous Wave) radar [20],
especially when passive reflectors are used [21].

There are other methods that are primarily focused on
winged aircraft that also require signal clearing, in addition
to requiring auxiliary equipment mounted on the ground that
complicates operation. Thus, there are those based on IR stereo
[22], [23] that use two beams of infrared signal emitted from
two known locations, or those based on FMCW radar that use
several transponders [24]. Another variant uses a single beam
but achieves poorer landing accuracy [25]. Finally, it is worth
mentioning the systems in which the drone is attached to a
mobile landing platform and then the cable is spooled [26].
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To address the problem of guidance in the final phase of
approach and landing, an RF circuit is proposed that allows
a control based on phase-shift detection of three input signals
from an oscillator located at the landing point. The proposed
solution provides DC voltages proportional to drone position
relative to landing point. This circuit can be considered as
a new navigation sensor that assists in precision landing
and facilitates guidance tasks [1]. In addition, a very simple
algorithm is detailed to perform the landing maneuver that
could be integrated into the same flight control platform, thus
avoiding the need to add additional processing units.

First, a simple analysis is carried out to understand the
basis on which the proposal is based. Then, the relationship
between the detected phase-shift and guidance instructions
during the landing maneuver is established. The following
section continues with the design of the triangular phase-
shift detector prototype. Finally, calibration and experimental
characterization is performed to determine non-ambiguous
phase-shift operating ranges, inherent in any phase-dependent
solution, as well as validation of the proposed algorithm.

II. TRIANGULAR PHASE-SHIFT LANDING SYSTEM

A. Fundamentals

Let us assume an environment free of obstacles and multi-
plath effects. Under these conditions, if a signal of frequency
f is transmitted at speed c from a point L towards two points
in space (Pi and Pj), the time-delay (∆t) and phase-shift
(∆θ) of the signals received on Pi and Pj depend on the
path difference (∆dij) (Eq 1).

∆tij = ∆dij/c [sec]

∆θij = 2f∆dij180/c [deg]
(1)

Let us consider a coordinate reference system as shown in Fig.
1, where the drone is located at point O and the landing point
is L. A signal of frequency f is transmitted from point L.
The drone receiver has three inputs (P1, P2 and P3) separated
by a distance D. Point O corresponds to the incenter of the
equilateral triangle (|OP1| = |OP2| = |OP3|).

The inputs are positioned with point P3 at the drone
forward direction. The drone rotation axis corresponds to the
Z detected axis: right turn, from Y axis to X axis and left
turn, from Y axis to −X axis. The drone is stabilized in the
XY plane and height zD. The landing point (L) is located at
cylindrical coordinates {rL, φL, −zD}.

The coordinates of the entry points (Pi) to the circuit
according to the unit vectors {x̂, ŷ, ẑ} are:

OP1 =
D

2
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2
tan

π

6
ŷ
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ŷ

The coordinate of the landing point is:

OL = rL sin(φL)x̂+ rL cos(φL)ŷ − zD ẑ (3)

zL=-zD
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Fig. 1. Coordinate reference system and points that define the problem.

The path differences between two input signals, which are
proportional to the phase-shifts (equation 1) are:

∆d12 = |OL−OP1| − |OL−OP2|
∆d23 = |OL−OP2| − |OL−OP3| (4)
∆d31 = |OL−OP3| − |OL−OP1|

The sum of the path differences is zero (
∑

∆dij = 0) and
therefore the sum of the phase-shifts is also zero. According
to this, it is enough to know two data points to know the third
datum. However, the three data are kept for greater redundancy
and providing greater robustness against deviations from ideal
behavior of real circuits.

When point O (drone location) is above the perpendicular
to point L, |OP1| = |OP2| = |OP3| and ∆θij = 0 are fulfilled.

B. Phase-shifts vs drone location

The characterization of phase-shifts as a function of drone
location is done by moving the landing point around the drone
(φL) for a given radius rL. Fig. 2a shows the procedure seen
from above (top view from Fig. 1) and phase-shifts between
inputs when landing point is rotated from -180o to +180o are
shown in Fig. 2b.

The results depend on the following parameters where
experimental data are between parenthesis: distance between
input points (D=7cm), signal frequency (f=2.45 GHz), drone
height (zD=100cm) and distance from drone to landing point
(rL=10cm). Attending to the intersection points between
curves, the graph can be divided into 6 sectors. In turn, the
two sectors of each phase-shift curve (∆θij) that have values
below the crossing point (approximately -10o and +10o in this
case) have been highlighted in Fig. 2b.

Thus, Sector 1 covers the values between -30o and +30o

(Sector 1a), and between -150o and +150o (Sector 1b). Sector
1a is in the direction of OP3 (φL=0o in Fig. 2a) and Sector 1b
is shifted 180o from the previous one. Similarly, Sector 2a is
defined between +105o and +135o (in the direction OP1, φL=
120o) and Sector 2b is shifted 180o (-90o to -30o); Sector 3a
is defined between -150o and -90o (in the direction OP2, φL=
-120o) and Sector 3b is shifted 180o (+30o to +90o). According
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Fig. 2. (a) Top view of Fig. 1. (b) Phase shift between input and signals
when location of the landing point (L) is changed around drone.
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Fig. 3. (a) Simplified measurement system for phase-shift measurements
based of analog multiplier. (b) Ideal phase detector response highlighting the
non-ambiguous range (±90o).

to this, if the landing point is in Sector 2, rotating the drone
+120o or -60o is enough to locate it in the Sector 1. Likewise,
-120o or +60o when L is in Sector 3.

C. Analog phase-shift detector and non-ambiguous range

The measurement of the gaps between the three input
signals to the circuit is carried out by a phase detector. To
measure phase-shifts between ±90o, using 0o as a reference,
it is common to use a 90o phase shifter, a multiplier and a
low-pass filter (Fig. 3a). The maximum detectable phase-shift
is given by the non-ambiguous zone within the ±90o range
(Fig. 3b). By assuming Vdij

=Kd sin(∆θij) and solving for
∆θij , the phase-shift can be calculated as: ∆θij = F (Vd) =
Kd arcsin(Vdij

), where |∆θij | ≤ 90o.
Non-ambiguous phase-shift detection range can be exceeded

when the drone moves away from the landing point. The
higher the drone height (zD), the greater the drone distance
(rL). Therefore, for each drone height (zD), maximum sepa-
ration distance between the drone (O) and the landing point
is given by non-ambiguous range of phase detector (±90o).
Maximum distances versus drone height (zDmax=10m) are
shown in Fig. 4 when f=2.45 GHz and D=7cm. Roughly,
drone tracking can be done in an inverted cone defined by a
surface of 486cm radius and the landing point.

The maximum distance (585cm) is about 60% of the drone
height and corresponds to directions given by input points
(Pi). The maximum distance can be increased by decreasing
frequency (f ) or separation between inputs (D). However, if
D is increased, the size of the antenna system increases and

Landing Point
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Fig. 4. Drone locations at the limit of the non-ambiguous detector phase
range (±90o) for several drone height (f=2.45GHz and D=7cm). Curves
traced from 1m to 10m in 1m step and from 1m to 0.1m in 0.1m step. (a)
3D view. (b) Top view where the worst case (rLWC

=486 cm) and best case
(rLBC

=585 cm) are indicated at 10m drone height.

could make landing maneuvers difficult in the presence of air
turbulence. Reducing the frequency also increases the size of
the antenna and possibly the minimum necessary separation
between them. Furthermore, increasing the maximum distance
reduces correction sensitivity expressed in phase detector
voltage per cm (∆Vd/(2rLBC

). ∆Vd=VdMAX
-VdMIN

(Fig. 3b).

D. Landing Algorithm

The landing algorithm is based on the phase-shift curves in
Fig. 2b. Sectors and angles of interest have been represented
in polar coordinates for clarity (Fig. 5). The aim is to provide
enough correction instructions to get the drone center (O)
continuously aligned with the landing point. In this algorithm
it has been assumed that drone will perform two types of
maneuvers (Fig. 6): right/left rotation about the Z axis and
forward/backward about OP3 direction (Fig. 2a).

The maneuver consists of two clearly differentiated parts:
rotation to bring the drone to Sector 1, as indicated at the
end of section II-B, and maneuvers to track the landing point
when the drone is in Sector 1 (right/left rotation and for-
ward/backward movements). This function can be performed
as many times as necessary during each descent movement
but how the information provided by triangular phase-shift
landing circuit applies is not the subject this publication. The
algorithm showing the flight maneuvers as a function of the
information provided by the circuit for a given height (zD), is
detailed in Fig. 7. The flight tracking algorithm to perform the
landing maneuver from the phase-shift values is very simple
and could be integrated into the same flight control platform,
thus avoiding the need to add additional processing elements.

III. TRIANGULAR PHASE-SHIFT DESIGN

The phase-shift measurement circuit consists of three phase
detectors and their corresponding 90ophase shifters to achieve
a non-ambiguous detection range of ±90o around the 0o

reference value (Fig. 3). Furthermore, for the particular case of
measuring the response of an array (3 in this case), the phase
shifter on each cell would be substituted by a 90o hybrid in
order to be able to combine the signals of adjacent locations
[27], [28].
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Fig. 6. Type of multi-rotor maneuvers vs triangular phase-shift sign. The
tracking algorithm asumes two type of maneuvers: right/left rotation about
the Z axis and forward/backward about OP3 direction (Fig. 2a).

1: if
(
abs(Vd12 ) ≤ abs(Vd23 )) & (abs(Vd12 ) ≤ abs(Vd31 )

)
2: {if Sector 1 do nothing}
3: else {Sector 2 or Sector 3}
4: if abs(Vd23 ) < abs(Vd31 )
5: 60oLeft ← Yaw Drone {L from Sector 2 to Sector 1}
6: else
7: 60oRight ← Yaw Drone {L from Sector 3 to Sector 1}
8: end if
9: end if

10: {L in Sector 1}
11: {Rotate Left/Right & Move Backward/Forward}
12: if sign(Vd12 ) ˜= sign(Vd23 )
13: Right ← Rotate Drone {L in Right Side}
14: else
15: Left ← Rotate Drone {L in Left Side}
16: end if
17: if Vd23 > 0
18: Forward ← Move Drone {L in Sector 1a}
19: else
20: Backward ← Move Drone {L in Sector 1b}
21: end if

Fig. 7. The flight maneuvers program algorithm as a function of triangular
phase-shift tracking information for a given height (zD).

Fig. 8a shows a simplified circuit diagram. Triangular ar-
rangement ensures design symmetry and minimizes the effects
that can result from mismatching. The input ports (INi) at
every 90o hybrid can be moved to distances D (Fig. 1) by
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Fig. 8. (a) Simplified schematic of the triangular phase-shift detector for RF
drone precise vertical landing. (b) Phase-detector input matching network at
2.45 GHz.

(a) (b)

Fig. 9. Prototype of triangular phase-shift detector for RF drone precise
vertical landing. (a) Top view. (b) Bottom view.

wiring. An input matching network has been implemented at
2.45 GHz (Fig. 8b). In addition, an operational amplification
stage has been included at the output of each phase detector to
adapt and filter the DC voltage, resulting in the final prototype
shown in Fig. 9. Commercial devices have been used in
the design prototype: analog phase detectors (AD8302) with
LF (Low Frequency) to 2.7GHz frequency band, high input
dynamic range (-60 dBm to 0 dBm) and slope of 10 mV/o;
hybrid couplers (X3C26P1-03S) with a phase-shift of 90o±4o

at 2.3 GHz to 2.9 GHz. Equation 5 shows the theoretical
triangular characteristic of the phase-detector output voltage
AD8302.

Vdij
= Kd(180− |∆θij |) (5)

Kd = 10(mV/o)

IV. CHARACTERIZATION AND VALIDATION

The purpose of the circuit characterization is to obtain
the expressions that allow converting output voltages in each
detector to the phase-shifts that can be processed by the land-
ing algorithm detailed in Fig. 7. The characterization of the
manufactured prototype is composed of three different parts.
The first step is to calibrate the measuring system to ensure
that both generators are well phase-synchronized and that the
reference planes are located on cable connectors. In the second
step, measurements are made by varying amplitude and phase-
shift of the input signals to the prototype, in order to obtain
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both the phase-shift as function of the voltages measured
for each detector output, and the non-ambiguity ranges to
determine the maximum drone distance deviation to landing
point. Finally, the flight maneuvers algorithm is validated
through values obtained from circuit characterization.

A. Calibration of the measurement system

The calibration of the measurement system must ensure that
the amplitudes and phase-shifts of the input signals correspond
to those under flight conditions. The detailed procedure is
described in [29] but a few simplifications have been made.
Because the distances traveled by RF signal between the
landing point and the input points (Pi) are very similar,
the generators are only calibrated for equal amplitudes. In
summary, back connections between generators are made to
share both reference and conversion oscillators. The phase of
the master generator is set to 180o and its output amplitude to a
specific value. Amplitude calibration is performed by means of
a power meter located at the output connector of the cable that
is connected to the master generator. Then, both generators are
connected to the inputs of a power combiner and its output is
connected to a spectrum analyzer. The phase and amplitude of
the slave generator is modified until the power combiner output
is minimized. This process must be performed for each power
and frequency. Fig. 10 shows equipment, connections and the
minimum measured value (-70.85 dBm) when frequency is
2.46 GHz and power is -20 dBm. At this point, both amplitudes
and phase-shifts between generators are well known in the
reference plane located at the end of cable connectors.

B. Triangular phase-shift circuit

The calibrated signals are applied to the circuit and poten-
tiometers are adjusted to maximize the detector output voltage
range when the prototype is connected to 3.3V power supply.
Measurements are made two by two, loading the unconnected
input with 50Ω. To obtain the curve of the detector, a 1kHz
offset is added to one of the generators. The complete assem-
bly of the measuring system is shown in Fig. 11. Moreover, the
detector signal aspect of the phase-shift detector is visualized
in the oscilloscope screen when the input amplitude is -
20dBm. Under these conditions, the detector output voltage
measured on the oscilloscope varies from 140mV to 2.84V
(central value = 1.49V). Finally, the circuit characterization
is done at 2.46 GHz, where the mismatching of the coupling
network makes the central value correspond to zero value in
∆θ12 phase-shift.

Then, the 1kHz offset between the synchronized generators
is removed and the phase of one of them is varied to measure
the output voltages of each detector using a voltmeter. The
curves of each detector show great similarity when the input
amplitude varies between -10 dBm and -40 dBm. Table I
shows measurements when the input amplitude is -20 dBm.
The VdREF

is the detector voltage when the input phase-
shitf is zero. Measurements show a displacement of detector
curves mainly due to variation in frequency response of the
used components and mismatching [30]. The largest deviation
occurs in the output corresponding to the phase-shift ∆θ31

Fig. 10. Connections of signal vector generators (R&S SMB-2345-A) for
measurement system calibration.

(+7o). If a symmetrical range is assumed, the maximum
phase-shift that can be considered is ±83o. However, a non-
ambiguous range value of ±80o is used in the prototype
characterization to avoid range limits and prevent possible
deviations.

An nth degree polynomial is chosen to model the detector
response because measured curve does not correspond to the
device theoretical one (Eq. 5) nor to the multiplier analog
sinusoidal one. As an example, Table II shows the fifth
degree polynomial coefficients values and the maximum error
obtained in each detector when the input amplitude varies
between -10dBm and -40dBm. The maximum error is given by
the detector that defines the non-ambiguous range, that is, the
one corresponding to ∆θ31 (3.8o). Fig. 12 shows the Phase-
shift curve (∆θ13) vs Vd, the data and the error at each mea-
surement point when the input signal varies between -10dBm
and -40dBm. The error is higher in the curved line of the
phase-shift detectors (phase-shifts close to -80o) and mainly
in Vd23

and Vd31
(Table II). Fig. 13a shows the reduction of

the drone-tracking inverted cone volume compared to the one
generated in Fig. 4. This occurs mainly due to the changes
in the non-ambiguous range (from ±90oto ±80o) although
there is also a slight frequency effect (from f=2.45GHz to
f=2.46GHz). The maximum separation decreases from about
60% (585cm @2.45GHz) to 50% (500cm @2.46GHz) of the
drone height (10m) in the direction of the axes fixed by the
input points (Pi). In order to make an assessment of the
interpolation error, Fig. 13b shows the phase-shift and voltage
detected as a function of the distance to the landing point
for a worst case trajectory: L located at the point {0,0,0}
when the drone moves along the Y axis. In that case, the
phase-shift between point P1 and P2 is zero (∆θ12=0) and
the other two vary from -80o to +80o. According to Fig. 13b
(φL=-180o and φL=0o), the drone can move through the non-
ambiguous zone from -5m to 5m when the drone is at the
height of 10m. The curves show a linear relationship between
phase-shift and distance. For -80o, the error shown in Fig. 12 is
almost 4o, which means an uncertainty of 2.5% (4/[2·80]·100)
in the range ±80o, that is, ±25 cm over 10m (±5m) in the
worst case. However, the error is in most cases less than 2o,
that is, less than 1.25%. These percentages are maintained for
other heights since the non-ambiguous zone (±80o) does not
vary.
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Fig. 11. Measurement system for the characterization of the prototype of
triangular phase-shift sensor (f=2.46 GHz). (a) Schematic, (b) Laboratory
Assembly

TABLE I
VALUES MEASURED AT DETECTOR OUTPUTS WHEN THE INPUT POWER IS

-20 DBM AND f=2.46GHZ

3.3V 80mA ∆θ12 ∆θ23 ∆θ31
-100o 0.228V -100o 0.253V -100o 0.352V
-90o 0.197V -90o 0.248V -90o 0.283V
-80o 0.223V -80o 0.299V -80o 0.266V
-70o 0.302V -70o 0.399V -70o 0.303V

VdREF
0o 1.533V 0o 1.610V 0o 1.443V
0o 1.533V -4o 1.571V +7o 1.577V

70o 2.756V 70o 2.814V 70o 2.691V
80o 2.837V 80o 2.873V 80o 2.796V
90o 2.865V 90o 2.879V 90o 2.854V
100o 2.838V 100o 2.832V 100o 2.863V

TABLE II
INTERPOLATION POLYNOMIAL COEFFICIENTS AT 2.46 GHZ WHEN THE

INPUT POWER VARIES FROM -10 TO -40 DBM AND ∆θ = F (Vd) IN ±80O .
THE ERROR IS DEFINED AS ε∆θ = F (Vd) - DATA.

Coeff. ∆θ12 ∆θ23 ∆θ31
a0 -114.203 -125.812 -129.954
a1 199.396 211.489 274.718
a2 -228.453 -240.403 -328.593
a3 164.691 172.357 226.222
a4 -55.965 -58.608 -73.488
a5 7.245 7.596 9.115
|ε∆θ| ≤ 0.9o ≤ 1.7o ≤ 3.8o

VdREF
1.530V 1.624V 1.436V

C. Flight maneuvers algorithm
The flight maneuvers algorithm detailed in Fig. 7 has been

validated by several examples where a detailed analysis of the

εΔθ31
(º)Vd (V)

Δθ31(º) * Data

0 0.5 1 1.5 2 2.5 3

-100

-50

0

50

100

-4

-2

0

2

4

Fig. 12. Representation of the fifth degree polynomial function that has
been used to model the response of the detector that measures the phase-
shift ∆θ31. In addition, the measured data and phase-shift error are included.
The polynomial is valid in the non-ambiguous phase shift range of ±80o.
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Fig. 13. Prototype characterization. (a) Drone locations at the limit of
the non-ambiguous detector phase range (±80o) for several drone height
(f=2.46GHz and D=7cm). Curves traced from 1m to 10m in 1m step: worst
case (rLWC

=419 cm) and best case (rLBC
=500 cm) for 10m are highlighted.

(b) Phase-shifts (∆θij and detector voltages (Vdij ) when drone moves along
the Y axis and landing point is located in {0,0,0}.

maneuvers is derived from the values of the voltages provided
by the Table II interpolation polynomials. The landing point is
placed in an arbitrary position relative to the drone within the
non-ambiguous tracking zone, the phase-shifts are calculated
from equations 1 to 4 and the detected voltages are obtained
from the Table I interpolation polynomials. The voltage values
are used in the algorithm to determine the maneuver to be
performed. This process is done continuously until the drone
is located just above the landing point. It has been assumed
that this situation occurs when |Vdij | < 0.02V. In addition,
the value of 1cm has been used for the forward/backward ma-
neuvers (MD=1cm) and 1o for the right/left turning maneuver
(RD=1o).

In Fig. 14, the drone (in green color) has been located at
the point {0,0}, oriented according to the positive Y axis (Fig.
2a) and height zD=300cm. The landing point has been located
in Sector 2b (φL=-35o and rL=100cm). The detector volt-
ages provided by the interpolation polynomial (Vd12

=0.72V,
Vd23=0.53V, Vd31=-1.08V) correspond to L point location in
Sector 2b. According to the algorithm, a 60o turn is made to
the left, which guarantees that point L is in Sector 1. The
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Fig. 14. Drone trajectory when the landing point (L) is located in Sector 2b.
(φL=-35o, rL=100cm). Drone located in {0,0,300}. XY view is added for
clarity. MD=1cm and RD=1o (one in ten values is displayed).

Vd12
 (V)

Vd23
 (V)

Vd31
 (V)

-1.17

 0.73

 0.51
 1.16

-0.71

-0.55  S3a

 S3b

-0.54

 1.13

-0.74

 0.72

 0.53

-1.08

 S2b
 S1a

 0.53

-1.16

 0.69

-0.74

-0.51

 1.18 S1b  S2a

25º

85º

-35º

-95º

-155º 145º

x (cm)

y
 (

cm
)

L

L

L L

L

L

Fig. 15. Drone trajectory when the landing point (L) is located in near the
edge of each sector. Landing point locations and initial detector voltages are
detailed for each case. MD=1cm and RD=1o (one in ten values is displayed).

next values (Vd12
=-0.38V, Vd23

=1.00V, Vd31
=0.69V) involve

a combined forward and right movement. Two additional
situations are detailed: an intermediate point corresponding
to forward and left movement in Sector 1a (Vd12

=0.00V,
Vd23=0.50V, Vd31=-0.51V), and location prior to descent when
the drone has been placed just over the point L (Vd12=0.00V,
Vd23

=0.01V, Vd31
=-0.02V). The complete landing trajectory

has been represented considering a descent of 1cm in each
maneuver. Although Fig. does not illustrate corrections in
detail, the algorithm is continuously proposing right/left and
forward/backward maneuvers.

Fig. 15 shows several trajectories with point L in different
sectors. It includes the detector voltages when the drone is
at the starting point ({0,0,300} in green) corresponding to
the different positions of the landing point. In all cases and
following the sequence of the algorithm in Fig. 7, the drone
is guided until it is just above point L, being able to start the
descent from that moment, executing the algorithm for each
height.

V. CONCLUSIONS

The triangular phase-shift detector has been designed to
facilitate landing maneuvers when precise pointing is required
over the landing point. It is a circuit especially indicated in
the last landing meters since it can provide a large amount
of data with a very low computational cost. The design is
particularly suitable for the final metres of abrupt, forested
and windy areas where it is necessary to have a high data rate
that allows corrections to be made at high speed. Combined
with imaging and GPS it can provide greater robustness to
accurate vertical landing systems. However, directivity of the
antennas, RF power of the oscillator at the landing point, or
sensitivity of the triangular phase-shift circuit will limit the
final maximum height. The system only needs a frequency
oscillator placed at the landing point and a reception platform
(antennas). The data rate used to position the drone with
respect to the landing point would be determined by the
processing time of voltages provided by the circuit. The circuit
performance is analyzed according to the design parameters:
frequency, separation between the receiver elements and drone
height, among others. An algorithm is displayed that uses the
phase-shift information provided by the circuit and allows
the drone to perform maneuvers aimed to align the drone
with the landing point. Simplicity of the algorithm and the
polynomial expression used to compute phase-shifts, suggest
the possibility of integration in the drone flight controller, with
no need of additional processing systems.

To demonstrate the feasibility of the proposed design, a
triangular phase-shift detector prototype has been implemented
using commercial devices: analog detectors with high input
dynamic range at LF to 2.7 GHz and hybrid couplers with a
phase-shift of 90o±4o at 2.3 GHz to 2.9 GHz. Once adjusted,
it is characterized at 2.46 GHz where the circuit shows a better
performance. The prototype has a non-ambiguous phase-shift
detection range of ±80o, allowing the drone to be tracked on
about circular surface with a radius equivalent to 50% of the
drone height. A fifth degree polynomial function allows to
compute the phase-shifts as a function of the output voltages
of each detector with an error less than 3.8o in the worst case,
when the RF input signal varies from -10dBm to -40dBm.
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