

SMS 2019 / EGF 2019 / NanoMed 2019

Joint International Conferences and Exhibition

23 - 25 Oct. 2019 Lisbon - Portugal

Book of Abstracts

Organizer

www.setcor.org

Portugal NanoMed 2019 Conference Abstract Confirmation

Julia Claudia Mirza Rosca <julia.mirza@ulpgc.es>

Mar 11/08/2020 22:03

Para: LUCERO BALDEVENITES <viviana.lucero@ulpgc.es>

De: Setcor Conferences and Events <info@setcor.org>
Enviado: martes, 6 de agosto de 2019 8:50
Para: Miguel López Ríos <miguel.lopez@ulpgc.es>
Asunto: NanoMed 2019 Conference Abstract Confirma on

Dear Mr Miguel López

The conference committee reviewed the abstract you submitted for the conference **NanoMed 2019** and we would like to confirm that it is **Accepted for a poster**

Please note that accepting the abstract does not mean you are automatically registered to the conference.

Please confirm your attendance by registering to the conference before the conference registration deadline.

Your contribution (presentation or poster) will not be scheduled in the conference program until you are registered as per the conference terms and deadlines.

Sincerely yours, Setcor.org team https://www.setcor.org

October 23, 2019 SMS 2019 / EGF 2019 / NanoMed 2019 - Joint Posters Session I Synthesis / Characterization / Properties					
	Posters Room Cascais				
Ν.	Title	Author, Affiliation, Country			
1.	Numerical and experimental validation of SMArt thermography for the control of GFRP composite laminate M. De Giorgi, R. Nobile, and A. Saponaro	Prof. Riccardo Nobile , University of Salento, Italy			
2.	Magnetic and Electrical Properties of postannealed Co2MnSi Heusler alloy films G. Grigaliūnaitė-Vonsevičienė , B. Vengalis, A. Maneikis and R. Juškėnas	Dr. Grazina Grigaliunaite- Vonseviciene , Vilnius Gediminas Technical University, Lithuania			
3.	Microstructure and mechanical properties of Fe-based amorphous alloy produced using the direct metal deposition method W. Pilarczyk	Prof. Wirginia Pilarczyk , Silesian University of Technology, Poland			
4.	Modification and characterization of VACNTs for application as water harvesting surfaces from dew and fog R.A. Pinheiro, V.J. Trava-Airoldi and E.J. Corat	Dr. Evaldo Corat , National Institute for Space Research- São José dos Campos, Brazil			
5.	In-pack Ohmic Heating of Packaged Food Using Carbon Black Loaded Polyethylene Films M. Gratz and H. Jaeger	Mr. Maximilian Gratz, University of Natural Resources and Life Sciences (BOKU), Austria			
6.	Structural, magnetic and electrochemical properties of AICoCrFeNiSi high entropy alloys R. Babilas , A. Radoń and W. Łoński	Dr. Rafal Babilas , Silesian University of Technology, Poland			
7.	Tunable and functionalizable polydopamine thin films by means of electropolymerization. T. Marchesi D'Alvise , S. Harvey, K. Wunderlich and T. Weil	Mr. Tommaso Marchesi , Max Planck Institute for Polymer Research, Germany			
8.	The Effect of Plasma Electrolytic Polishing on the Surface Properties of Steel after Nitrocarburising S. Kusmanov , S. Silkin and I. Tambovskiy	Prof. Sergei Kusmanov , Kostroma State University, Russia			
9.	Microstructure and Corrosion Resistance of Zn-Al-Mg Alloy Coated Steel Product and Its Applications K. Kim, S. So, I. Park, J. Yoon, M. Oh , Y. Jang and M. Lee	Prof. Min-suk Oh , Chonbuk National University, Rep. of Korea			
10.	Modified Epoxy Coating with high Efficiency Isocyanate Micro- capsules for Corrosion Protection of Steel M. Attaei , L. M. Calado, M. Taryba A. C. Marques and M.F. Montemor	Ms. Mahboobeh Attaei , Lisbon University, Portugal			
11.	Terbium doped calcium germinate (Ca2GeO4) as a potential candidate for LED application I. Koseva, P. Tzvetkov, P. Ivanov, R. Tomova , A. Yordanova and V. Nikolov	Prof. Reni Tomova , The Institute of Optical Materials and Technologie, Bulgaria			
12.	Structure and luminescent properties of Eu3+ doped glass in the system WO3-La2O3-B2O3-Nb2O5 L. Aleksandrov, R. Iordanova, M. Milanova, P. Ivanov, P. Petrova and R. Tomova	Prof. Reni Tomova , The Institute of Optical Materials and Technologie, Bulgaria			
13.	Dry Transfer of Chemical Vapor Deposition Graphene onto Silicon Wafers Treated by Silane Coupling Agents M. Ishihara and M. Hasegawa	Dr. Masatou Ishihara , National Institute of Advanced Science and Technology (AIST), Japan			
14.	SnOx thin films using RF sputtering as transparent conductive materials Y. Zakaria, A. Slaoui, S. Ahzi, A. Samara, V. Bermudez Benito and S. Mansour	Mr. Yahya Zakaria , Hamad Bin Khalifa University, Qatar			
15.	The Barrier and Electrochemical Properties of CVD Graphene on Metallic Substrates P. Ozga , A. Hara, Z. Świątek and J. Pstruś	Dr. Piotr Ozga , Polish Academy of Sciences, Poland			
16.	Graphene surface analysis and layer counting using scanning low energy electron microscopy L. Průcha , J. Piňos, M. Kizovský and E. Mikmeková	Mr. Lukas Prucha , Institute of Scientific Instruments of the CAS, Czech Republic			

17.	Adjustable Hydrogenation of Monolayer Graphene Depending on Back-Gate Voltage H.Choi and J.Hong	Ms. Harim Choi , Yonsei University, Rep.of Korea	
18.	Low contact resistance for graphene on Pt bottom electrode and its effects on device performance J.Cha , J. Son and J. Hong	Mr. Jongin Cha , Yonsei University, Rep. of Korea	
19.	Plasmon-enhanced Substrates for the Super-resolution Fluorescence Imaging C-Y.Lin, G. Abrigo and F-C. Chien	Mr. Fan-Ching Chien , National Central University, Taiwan	
20.	Synthesis of silver nanoparticles and nanocomposites with unique structure and optical properties by UV-irradiation method A. Radoń	Mr. Adrian Radoń , Silesian University of Technology, Poland	
21.	SbSI nanowires composites for energy harvesting and sensors B. Toroń . P. Szperlich, M. Jesionek, M. Kozioł and M. Nowak	Dr. Bartłomiej Toroń , Silesian University of Technology, Poland	
22.	Density Functional Study of Two Dimensional Monolayer PtX2[X= S, Se and Te]. H. Alagi and W.A.Diery	Ms. Hadeel Alaqi , King Abdulaziz University, Saudi Arabia	
23.	EIS Characterization of Passive Films Formed on AlxCoCrFeNi Alloys M.López Ríos, N.Florido Suárez, I.Voiculescu, V.Geanta and J.C.Mirza Rosca	Dr. Miguel Lopez, Las Palmas de Gran Canaria University, Spain	
24.	Effects of Nickel Content on the Microstructure, Microhardness and Corrosion Behavior of High-entropy AlCoCrFeNix Alloys M.López Ríos , P.P.Socorro Perdomo, V.Lucero Baldevenites, I.Voiculescu, V.Geanta and J.C.Mirza Rosca	Dr. Miguel Lopez, Las Palmas de Gran Canaria University, Spain	
25.	Thin ice under pressure on graphene: a theoretical NMR study A. Jaadouni, E. Rauls, W.G. Schmidt and U. Gerstmann	Dr. Uwe Gerstmann, University of Paderborn, Germany	

Joint Posters Session I Synthesis / Characterization / Propertie

EIS Characterization of Passive Films Formed on Al_xCoCrFeNi Alloys

M.López Ríos, 1 N.Florido Suárez1, I.Voiculescu2, V.Geanta2, J.C.Mirza Rosca1*

¹ Las Palmas de Gran Canaria University, Mech. Eng.Dept.,Spain ² Politehnica University of Bucharest, LAMET, Bucharest, Romania

Abstract:

Electrochemical Impedance Spectroscopy (EIS) measurements have been performed on High Entropy Alloys (HEAs) type Al_xCoCrFeNi with different aluminium content (x = 0.6; 0.8 and 1.0) in order to characterize their passive film and corrosion resistance at 37°C under simulated physiological conditions (Ringer's solution) acidulated with HCl at pH=3. The impedance spectra were obtained at different potential values between E_{corr} and + 0.7 V vs. SCE.

Analysis of the impedance spectra was done by fitting the experimental data to different equivalent circuits. Two equivalent circuits, with one time constant and two time constants respectively, can be satisfactory used for fitting the spectra: one time constant represents the characteristics of the passive film and the second one is for the charge transfer reactions.

The polarization resistance and the double layer capacity were compared at different polarization potentials for the detection of the passive film structure and the roughness of the electrode surface.

It can be seen for both materials that the resistence of the passive film is very high and decreases slightly with the potential: the very high resistance of the passive film implies a high corrosion resistance which can be attributed to the formation of the protective oxide layer.

There is a decrease in the values of the parameter n of the CPE (constant phase element used in the mathematically modelling in order to consider also the electrochemical behavior of systems which do not correspond exactly to a pure capacitance) related to the rugosity of the electrode surface.

Keywords: high entropy alloys, aluminium, EIS, equivalent circuit, corrosion resistance, passivation, Ringer solution.

Figure 1: Figure illustrating the equivalent ciruits used for the fitting of the experimental data where R_{sol} is the ohmic resistance of the electrolyte. a) The first circuit has one time constant.

b) The second equivalent circuit fitted for HEAs in Ringer's solution of pH = 3 presents the second time constant which illustrates the slight porosity of the passive layer on the alloy surface (R₁ and CPE₁). So, the equivalent circuit contains in addition a parallel circuit for charge transfer reactions through the passive layer consisting of the double layer capacitance CPE₂ and charge transfer resistance R₂.

References:

- B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S.Mishra, R. Banerjee (2019) Tensile yield strength of a single bulk Al0.3CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa, *Scripta Materialia*, 162, 18-23
- Z.Li, S.Zhao, R.O.Ritchie, M.A.Meyers (2019) Mechanical properties of highentropy alloys with emphasis on facecentered cubic alloys, *Progress in Materials Science*, 102, 296-345.
- 3. D.B.Miracle, O.N.Senkov, A critical review of high entropy alloys and related concepts (2017), *Acta Materialia*, 122, 448-511.

POLITEHNICA

DIN BUCUREȘTI

200

EIS Characterization of Passive Films Formed on AlxCoCrFeNi Alloys

M.López Ríos, 1 N.Florido Suárez 1, I.Voiculescu 2, V.Geanta 2, J.C.Mirza Rosca 1* ¹ Las Palmas de Gran Canaria University, Mech. Eng. Dept., Spain ² Politehnica University of Bucharest, LAMET, Bucharest, Romania

8

HEA-1	HE	A-5 A-5	HEAS

			and the start in the second start is the second start in the second start in the second start is the secon	les to be to be the top one
	COMPONENTS	HEA 1	HEA 5	HEA 6
		AlCrFeCoNi	Al _{0.8} CrFeCoNi	Al _{0.6} CrFeCoNi
5	AI, wt%	10,67	8,72	6,68
	Cr, wt%	20,55	21,00	21,47
	Fe, wt%	22,13	22,61	23,12
	Co, wt%	23,32	23,82	24,36
	Ni. wt%	23.33	23.85	24.36

Electrochemical Impedance Spectroscopy (EIS) measurements have been performed on High Entropy Alloys (HEAs) type AlxCoCrFeNI with different aluminium content (x = 0.6; 0.8 and 1.0) in order to characterize their passive film and corrosion resistance at 37°C under simulated physiological conditions (Ringer's solution) acidulated with HCl at pH=3

CORROSION BEHAVIOUR

