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ABSTRACT Coastal areas are key to sustaining biodiversity, but their complexity and variability makes
their analysis challenging. On the other hand, mountain ecosystems include a large percentage of the global
biodiversity and their monitoring is essential, as they are especially vulnerable to climate change. In this
context, remote sensing offers a cost-effective technology for the conservation of both kinds of natural
areas. In this work, multispectral and hyperspectral data recorded by sensors, onboard satellites, aircrafts
and remotely piloted aircraft systems (RPAS), have been used for the sustainable management of natural
resources. Specifically, a multiplatformmethodology has been developed to process multisensor high spatial
resolution imagery and the main benefits and drawbacks of each technology have been identified. Advanced
processing techniques in each stage of the methodology have been selected to provide accurate and validated
benthic and vegetationmaps. Two challenging ecosystems, located in Cabrera and Teide National Parks, have
been selected for this study. They correspond with a coastal and a mountain island ecosystem, respectively.
To address the associated challenges, the use of imagery with the maximum spatial and spectral resolution,
provided by Sentinel-2, WorldView-2, CASI and Pika-L, has been considered. Results have been validated
with in-situ data and by the National Parks’ managers and they have shown the ability of remote sensing to
accurately map both Parks when the appropriate imagery and techniques are selected. The best performance
was achieved with the Support Vector Machine classifier and, in general, WorldView can be considered the
most appropriate platform when factoring in cost, coverage and accuracy.

INDEX TERMS Benthic mapping, multispectral and hyperspectral imagery, remote sensing, vegetation
mapping.

I. INTRODUCTION
According to the United Nations Environmental Programme
and its digital update of September 2020 [1], in the last
few years, terrestrial coverage of protected areas increased
to 15.0% while the marine coverage increased further to
17.3% in national waters. In Spain, specifically, protected
areas cover over 27% of its total surface, with preserved
marine regions exceeding 8% of its total surface and with
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a coastline length about 7,880 km [2]. These areas are
essential for the conservation of biodiversity as well as
provide services to society. Moreover, activities around
visitors are a source of "green" jobs. As an example, Spanish
Parks receive over 21 million visitors yearly. However, to
reach their full potential and their efficient management,
adequate mechanisms for the monitoring and evaluation are
necessary [3].

Mountain ecosystems cover a quarter of the land area.
They are challenging environments to monitor due to
relevant topographic and climatic gradients. Coastal areas

6536 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9646-1017
https://orcid.org/0000-0002-0804-9293
https://orcid.org/0000-0002-4542-2501
https://orcid.org/0000-0001-8311-1168
https://orcid.org/0000-0002-6485-393X


J. Marcello et al.: Advanced Processing of Multiplatform Remote Sensing Imagery

are also inherently difficult to supervise because of their
variability and complexity. In this context, high resolution
satellite-based imaging systems, with spectral bands within
the visible and near infrared spectrum, can provide informa-
tion of coastal parameters and land covers at broader spatial
and finer temporal scales than those achieved through field
observations alone.

Nevertheless, geometric distortions, as well as radiometric,
atmospheric and solar effects have high impact on the
results [4]–[7].

Multispectral (MS) satellite sensors have been used for
many decades, however, more recently, hyperspectral (HS)
imagery has been considered to map vegetation or benthic
habitats at high resolution [8]–[15]. Unfortunately, high
spatial HS sensors onboard satellites are not available
nowadays and, as a result, airborne or RPAS HS instruments
are the only options to map complex habitats environments at
the maximum spatial and spectral resolutions.

Given the enormous potential of remote sensing systems
for environmental conservation [16], this work focuses
on developing a multisensor methodology that, applied
to multispectral and hyperspectral imagery, can allow the
sustainable management of natural resources. A complete
processing protocol has been developed for monitoring
coastal shallow-waters and mountain environments, and
their critical elements have been explored. Contributions
are presented regarding the best advanced correction and
classification techniques, as well as a comparative assessment
of the benefits of using the latest satellite multispectral
and airborne/RPAS hyperspectral high resolution imagery to
obtain accurate maps. In coastal ecosystems, the outcome
focuses mainly on detecting and classifying seagrass mead-
ows in waters up to 30m deep, like Posidonia andCymodocea
in the coastal ecosystem. In land areas, the goal is to map
endemic and invasive vegetation species in order to analyze
their distribution, health and dynamics.

To develop and validate the proposed techniques, two
representative areas have been studied: Teide and Cabr-
era National Parks, located in the Canary and Balearic
archipelagos (Spain), respectively. Island ecosystems have
been selected because of their complexity and richness
in endemic species and because they are most vulnerable
to climate change, tourism and the introduction of exotic
species. Furthermore, Parkmanagers lacked updated and high
resolution maps of their protected natural areas.

II. MATERIAL AND METHODS
A. STUDY AREAS
The Cabrera and the Teide National Parks are located in the
Balearic Islands (Mediterranean Sea) and the Canary Islands
(northwest African coast), respectively, as shown in Fig. 1(a).

The Cabrera Archipelago, made up of 19 islands or islets
and located just 15 kilometers from the south coast of
Mallorca, is the best example of undisturbed ecosystems
in the Spanish Mediterranean area. Due to its isolation,

Cabrera has great natural value and it is frequently considered
one of the best preserved ecosystems in Spain as well
as the Mediterranean. Seagrass meadows, specially, are
one of the archipelago’s most important benthic habitats,
with Posidonia oceanica as the dominant species, which
it is protected by various regional, national and European
regulations [17]. Within the framework of this research,
a detailed study of Posidonia has been carried out through
the use of high resolution MS and HS remote sensing data.
Fig. 1(b) shows a picture of areas taken during the 2018 RPAS
and field campaigns.

The Canary Islands, thanks to the great variety of endemic
species, are one of the most important spots of biodiversity in
Europe. The Teide National Park, located in Tenerife Island,
is an important natural areas of Canary Islands. The Teide
peak, formed by several overlapping volcanoes, is Spain’s
highest mountain (3718 m). The vegetation of this ecosystem
is a characteristic shrubland of the high Mediterranean
mountain, but it incorporates elements of great physiog-
nomic originality. The most characteristics species are
Pinus canariensis (canarian pine), Spartocytisus supranubius
(Teide broom), Descurainia bourgaeana (Teide flixweed),
Pterocephalus lasiospermus (summit rosebush), Aenocarpus
viscosus (Canary Island flatpod), and Echium wildpretii and
Echium auberianum (Mount Teide bugloss) [18]. Fig. 1(c)
identifies the most abundant species of the Park and
highlights the ecosystem’s heterogeneity and complexity.

B. DATA
The satellite data used come from WorldView-2 (WV-2)
and Sentinel-2 (S-2) multispectral sensors. Acquisition
dates were planned or chosen to match the hyperspectral
airborne/RPAS overflights. Table 1 presents the spatial and
spectral characteristics of the remote sensing data used in the
study.

TABLE 1. Technical characteristics of the multispectral and hyperspectral
imagery.

Table 2 lists the specific scenes selected for each location.
For the Cabrera National Park, three different platforms
were analyzed: Sentinel-2 andWorldView-2 satellites as well
as the DJI Matrice 600 RPAS equipped with the Pika-L
instrument. For the Teide National Park, three different
platforms were also used: WorldView-2, the airborne CASI
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FIGURE 1. Areas studied: (a) Balearic islands and canary islands geographic location (OpenStreetMap
). RPAS campaigns
during 2018: (b) Cabrera national park and (c) Teide national park.

sensor and the Pika-L camera. Sentinel-2 was not used
because a 10 m pixel size is not enough to discriminate the
small and mixed shrubs.

Fig. 2 shows the specific areas sensed by each platform,
as well as the color composite images of each sensor, for a
small subset of the scene, to better appreciate differences in
spatial resolution.

The trade-off between coverage and spatial resolution
is evident. It is important to point out the importance of
selecting the right date for the Teide Park. Specifically,

the end of the spring season was chosen, as the discrimination
capability is highest during the blooming stage of some
plant species. For this reason, along with the National Park
authorities, all images were recorded on May 31st or June 1st.
In-situ field data was acquired simultaneously with the

aircraft and RPAS campaigns to train and test the pro-
cessing methodology. Accurate sampling was performed
in many locations to cover each species’ variability, and
reflectance measurements were recorded in the visible and
near-infrared range of the spectrum (350–2500 nm) over
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FIGURE 2. Coverage of the multiplatform remote sensing scenes and true color composite images for the subset marked in cyan: (a) Cabrera
national park (S-2 in yellow, WV-2 in red and Pika-L in gray) and (b) Teide national Park (WV-2 in yellow, CASI in red and Pika-L in gray).

TABLE 2. Scenes used in the analysis of both national parks.

homogeneous and flat areas using the ASD FieldSpec-3 field
spectroradiometer.

C. PROCESSING METHODOLOGY FOR COASTAL AREAS
The development of new Earth observation platforms and
advanced imagery sensors, with improved capabilities, can
assist in the generation of accurate knowledge for the sustain-
able management of natural resources in littoral zones. In this
context, the overall methodology for the selected vulnerable
ecosystem, Cabrera National Park, is shown in Fig. 3.
The goal is to discriminate the following benthic classes:
seagrass (Posidonia or Cymodocea), sand or sediments, and
rocks.

A preliminary pre-processing is applied to obtain corrected
and masked imagery. Regarding atmospheric correction, for
the Pika-L scene, the RPAS carries a radiometer that points to
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FIGURE 3. Overall processing methodology to generate the seafloor maps
from multiplatform HS and MS imagery.

the zenith calculating the total irradiance in the 400–1000 nm
range. The reflectivity is computed with the simultaneously
sensed information of the radiance and irradiance. For
the WorldView-2 data, the FLAASH advanced atmospheric
model-based algorithm has been applied as it achieves
excellent performance for coastal areas [6]. For Sentinel-2,
the atmospheric correction method to derive the reflectance
images is Sen2Cor [19], a combination of state-of-the-art
methods adapted to S-2. Afterwards, non-water areas are
masked using a normalized water index that considers the
blue and near-IR channels. In addition, when the sea surface
was not calm, a sun-glint correction was applied [20], [21].
Finally, using bathymetric information, water areas over 30m
deep were removed from the analysis because the water
column attenuates the optical channels and radiation cannot
reach the seafloor from a certain depth.

For the hyperspectral image, Principal Component Anal-
ysis (PCA) and Minimum Noise Fraction (MNF) have
been considered due to their ability to extract the relevant
information in a reduced number of components [22]. After
visual inspection, the first 5 components have been selected
in the experiments.

When corrections were performed, feature extraction
was undertaken to get additional information to improve
the classifiers’ accuracy. Texture information (mean and
variance), calculated applying the co-ocurrence matrix [23]
to the blue band, was added into the classifier to increase the
discrimination capability between classes. Bathymetry [24]
was also used as an additional feature to improve the
generation of benthic maps.

Finally, Support Vector Machine (SVM) and Maximum
Likelihood (ML) supervised classifiers were used, as they
provide greater performance in seabed mapping than other
tested algorithms like Spectral Angle Mapper (SAM) [5].
Support Vector Machine is a machine learning technique that
has demonstrated excellent robustness and accuracy when
compared to other advanced methods (deep convolutional
neural networks, random forests, sparse representation-based
techniques, logistic regression-based algorithms, etc.) [25].

On the other hand, SVM can perform well, even when a
large training set is not available. According to literature
and different experiments, the Gaussian radial basis function
kernel has been used and grid search was used to find the
optimal parameters [5], [26], [27].

In this work, 3 different types of training regions of
interest (ROIs) were set up depending on the amount of
pixels used to train the classifiers (ROI_F: ROIs with few
pixels, ROI_A: ROIs with medium amount of pixels and
ROI_M: ROIs with many pixels). For each category (ROI_F,
ROI_A and ROI_M), 6 different ROIs datasets were created
selecting pixels at different regions and depths to deal with the
variability of each class. The same regions were chosen for all
the sensors, thus, the number of pixels for each type of ROI
depends on the sensor spatial resolution. As a reference, for
a 2 m sensor, the approximate number of pixels were 20 for
ROI-F, 200 for ROI-A and 2000 for ROI-M.

FIGURE 4. Reference benthic maps: (a) Posidonia project; (b) Cabrera
national park.

Finally, the mapping accuracy was computed using an
independent dataset of test regions. The confusion matrix and
the Kappa coefficient were used during the assessment [28].
Basically, the confusion matrix represents true classes
versus the classifier’s predictions, with the overall accuracy
parameter measuring the correctly classified pixels. The
Kappa index measures the agreement between classification
and truth values, but taking into account the agreement
occurring by chance. Visual analysis was also conducted
using the available benthic maps of the area (Fig. 4): Life
Posidonia Project of 2005 [29] and Cabrera National Park
of 2011 [24]). Unfortunately, these maps are not updated as
it is a labor intensive task that requires an important financial
investment.
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D. PROCESSING METHODOLOGY FOR LAND AREAS
The monitoring of the Teide Park follows a similar methodol-
ogy (corrections, feature extraction and classification steps).
Fig. 5 shows the simplified flowchart.

FIGURE 5. Processing methodology for the monitoring of land
ecosystems with multiplatform data.

Preprocessing tasks are similar to those of the coastal
methodology. The main difference in WV-2 for land
applications is the possibility to apply pansharpening tech-
niques [30]–[33] to increase the spatial resolution by a factor
of 4. These techniques cannot be used to map the seafloor as
the panchromatic image integrates a wide spectral range and,
therefore, only provides bottom information for extremely
shallow waters. The Gram-Schmidt algorithm [34] has been
used as it provides excellent performance, increasing the
spatial detail with low spectral distortion. FLAASH [35] was
also applied for the atmospheric correction when introducing
the appropriate parameters [36].

For the HS data, the high number of spectral channels turns
into a decrease on the classifier’s performance if the size of
the training dataset is not large enough with respect to the
number of bands. To solve this ’Hughes’ phenomenon [37],
dimensionality reduction techniques can be applied. In this
work, after the preliminary assessment for the CASI sen-
sor [38], the Minimum Noise Fraction transform (MNF) was
chosen to remove redundant information.

Training and testing samples for the classification were
collected over two campaigns locating, accurately and
randomly, field data for each vegetation species to be
analyzed (D. bourgaeana, S. supranubius, P. canariensis and
P. lasiospermus). Plants with different sizes and blooming
stages were selected to take into account the variability of
each species throughout the Park. The SVM classifier was
chosen because of its robustness to the quality and quantity
of the training dataset and because it performs much better
than the ML for land applications [10]. Before applying the
classifier, the Jeffries-Matusita distance was calculated on the
training pixels to analyze the separability of each vegetation
class. This distance ranges from 0 to 2, being 2 a perfect
separability value between classes.

III. RESULTS
The following sections present the results for the ecosystems
selected. Processing has been carried out using ENVI 5.2.

A. COASTAL SHALLOW WATERS
The main results for the mapping of benthic habitats in
Cabrera are next presented. Maps have been generated for
the complete scene of each sensor (Fig. 2(a)), but only the
common areawas considered for the comparative assessment.
Fig. 6 includes the imagery used in the analysis. Differences
in spatial resolution between sensors are evident. Noisy areas
in the upper-left corner of the RPAS image can be appreciated
due to problems during the acquisition.

To check the effects of the spatial resolution in themapping
results, the Pika-L image was also resized to 2 m applying
a bilinear resampling algorithm. To better understand the
complexity of the mapping, 1 m isobaths are also included
in the figure.

As indicated, 3 different categories of training regions of
interest (ROIs), each one with 6 datasets, were considered
to train the classifiers. In this context, Fig. 6(f) presents the
example of one training dataset. Posidonia/Cymodocea is
displayed in green while sand and rocks are highlighted in
yellow and brown, respectively. It can be appreciated that
training regions are selected to cover the variability of the
classes and, when possible, at different water depths.

Table 3 shows the overall accuracy of the benthic maps
generated by ML and SVM classifiers. Mean and standard
deviation values are included. For the hyperspectral imagery,
results using dimensionality reduction techniques (PCA
and MNF transforms) have also been tested. After visual
inspection, the first 5 components were selected as the
remaining channels were mainly noise. Besides, to assess if
using the 8 bands of WV-2 improves accuracy, experiments
removing the 4 additional channels of WV-2 (coastal blue,
yellow, red edge and NIR2) were also performed.

For simplicity, and to avoid redundancy, the Kappa
coefficient values are not included in Tables 3 and 5, but
the same conclusions can be derived by using the overall
accuracy.

To better analyze the previous results, Fig. 7 shows
the mean overall accuracy for each sensor, ROI type and
algorithm. As expected, accuracy mostly increases as the
number of training pixels increases. We can observe that
ultra-high resolution, as provided by the Pika-L, offers an
excess of fine detail that implies greater variability in each
class degrading the classification performance. Furthermore,
the use of hyperspectral data does not demonstrate a clear
benefit over multispectral information as very few bands
reach the seafloor.

In general, SVM obtains higher accuracies but the simpler
ML also provides satisfactory results. We can conclude that
WorldView-2 can be the most appropriate sensor in this
scenario.

Table 4 includes the computation times for each experi-
ment. SVM clearly requires higher processing times than ML
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FIGURE 6. (a) Bathymetry with 1 m isobaths; (b) Pika-L 10 cm; (c) Pika-L
2 m; (d) WV-2; (e) S-2; (f) WV-2 (blue channel) with one example of ROI
with an average number of pixels (200 pixels/class for a 2 m resolution).

FIGURE 7. Mean overall accuracy for each sensor and ROI category using
maximum likelihood and support vector machine algorithms.

and times increase dramatically for the hyperspectral image
at the maximum resolution. PCA and MNF transforms can
reduce them without loss of performance.

To improve classifications accuracy, further experiments
including additional features have been carried out. Given the
previous results (Table 3 and Fig. 7) only the ROI_M dataset
has been considered. In particular, texture and bathymetric
information were included in the analysis. Table 5 presents
the overall accuracies (mean and standard deviation) for the
different sensors and feature combinations, training ML and
SVM algorithms with the ROI_M dataset. We can conclude
that texture and bathymetry increase accuracy slightly, but
only in some cases and mostly for the SVM classifier.

Fig. 8 shows the benthic maps obtained for each dataset,
ML (left) and SVM (right), using the best combination from
Table 5. A majority filter with a 3 × 3 kernel has been
applied to remove isolated noisy pixels. In general, we can
note that similar maps are derived for each type of imagery
irrespective of their spectral and spatial resolutions, except
the upper-left part of the RPAS scene due to sensing problems
during the acquisition. Maps properly match the reference
maps included in Fig.4.

B. MOUNTAIN ECOSYSTEM
The Teide National Park has been chosen as a high mountain
area for its complexity and variability, as it is strongly
stressed by climate change, herbivory pressure and tourism.
Classifying the species is very challenging with remote
sensing techniques as this shrubland ecosystem is mainly
made up of small and mixed plant species (Fig 1(c)). For
this reason, Sentinel-2 was not used as it cannot provide the
appropriate spatial resolution.

The methodology presented in Fig. 5 has been applied to
the MS and HS imagery provided by the 3 different platforms
for the Teide National Park.

Table 6 shows the overall accuracy and Kappa coefficient
of the vegetation maps generated by the SVM classifier.
To properly compare results, the area covered by the RPAS in
the northern part of the park has been selected for the study
and the same training and test datasets have been used. For
WorldView-2 imagery, apart from the original multispectral
bands, the assessment has included the pansharpened data at
0.5 m applying the Gram-Schmidt (GS) algorithm. For the
hyperspectral imagery, in addition to the original bands, the
first 10 components of the MNF transformation have also
been selected to retrieve the vegetation maps.

It can be appreciated that the 2 m (original WV-2 MS
resolution) is not enough to accurately analyze this complex
scene made up of small and mixed plant species. Conversely,
resolutions under one meter can properly discriminate the
different species. On the other hand, the MNF transform
increases performance avoiding the so-called Hughes phe-
nomenon in hyperspectral imagery when the amount of
training samples is limited.

As accuracy is very similar for all the sensors, the most
appropriate platform to generate the vegetation maps, factor-
ing in cost, coverage and accuracy, is WorldView but after
applying pansharpening techniques.
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TABLE 3. Overall accuracy (%) of ML and SVM for the different sensors, input combinations and training datasets (Best accuracies for each classifier and
ROI are marked in bold).

TABLE 4. Computation time for ML and SVM classifiers. Time is expressed in seconds, except in minutes or hours when indicated (ENVI 5.3 has been used
in a laptop with Intel Core i7-7500U CPU 2.9 GHz, 8 GB of RAM and Windows-10 64 bits operating system).

TABLE 5. Overall accuracy (%) of ML and SVM for the different sensors
and input combinations including texture and bathymetry (Best
accuracies marked in bold). B: Bands, T: Texture, Bath: Bathymetry.

Analyzing the confusion matrix for each sensor’s best
map, and focusing on the plant species, it can be appreciated
in Fig. 9 that results are mainly satisfactory. Spectral
signatures have also been included to show the mean
reflectance of each species with respect to wavelengths.

In summary, for this heterogeneous ecosystem, given the
appropriate date of acquisition is chosen for the maximum

TABLE 6. Overall accuracy (%) and Kappa coefficient of the SVM maps for
the different sensors and combinations.

spectral separability, the main limiting factor to get excellent
performance is the spatial resolution.

Figs. 10 and 11 show the best vegetation maps for
the northern part of the Park and a zoom of the scene,
respectively. The radiometric problem in each strip sensed by
the RPAS can be appreciated. In general, maps are similar but
the higher spatial resolution of the Pika-L sensor allows the
detection of more individuals of D. bourgaeana (Fig. 11).

IV. DISCUSSION
A. PREPROCESSING
The development of new remote sensing platforms, with
advanced imagery sensors and improved capabilities, can
contribute to the conservation of natural resources in natural
ecosystems. However, the data acquired by these sensors
must be processed to properly extract accurate information.
Appropriate correction algorithms are important to estimate
reflectance information at surface level.

In particular, radiometric corrections are critical when
using satellite to monitor coastal areas, as radiation reaching
the sensor from the seafloor is very low due to the
water column attenuation. Thus, the atmosphere severely
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FIGURE 8. Best classification maps combining bands, texture or
bathymetry for the Maximum Likelihood (left) and Support Vector
Machine (right) classifiers: (a) Pika-L 10 cm.(b) Pika-L 2m. (c) WV-2.(d) S-2.

disturbs the sensed signal. To alleviate the atmospheric
effects, different approaches have been developed [39], [40],
mainly image-based correction techniques (DOS, COST,
QUAC, etc.) and more complex radiative transfer mod-
els (MODTRAN, FLAASH, ATCOR, 6S, Sen2Cor, etc.).

FIGURE 9. (a) Overall accuracy (%) of each plant species: WV-2 (50 cm);
CASI (75 cm) and Pika-L (10 cm). (b) Field photo of the analyzed plant
species. (c) Spectral signatures (mean value of the reflectance) measured
by the ASD FieldSpec-3 field spectroradiometer.

As analyzed in previous works [6], [36], [41], different
strategies have been compared with WorldView-2 data and,
in general, radiative models properly remove the atmospheric
contribution. In particular, FLAASH and 6S demonstrate
excellent performance with low RMSE values in both coastal
and vegetation zones.

RPAS imagery also requires important pre-processing
tasks. Apart from the radiometric corrections, geometrics
transforms are important to correct, orthorectify, co-register
and generate the mosaic image from the individual strips.
In mountain areas, a very high resolution digital elevation
model is required while for coastal areas the bathymetric map
is key to generating the composite image from the corrected
strips.
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FIGURE 10. Best Support Vector Machine vegetation maps for each sensor: (a) WV-2 pansharpened GS. (b) CASI with 10 MNF
components. (c) Pika-L with 10 MNF components.

B. COASTAL MONITORING
A comprehensive analysis of different features and process-
ing techniques has been performed to obtain a robust method-
ology to produce the accurate benthic habitat maps. To select
the best methods, different dimensionality reduction and
feature extraction methods were assessed (Principal Com-
ponent Analysis, Minimum Noise Fraction, Co-ocurrence
matrix, etc.) as well as some supervised classification algo-
rithms (Maximum Likelihood and Support Vector Machine).

Regarding the spatial resolution, the ultra-high resolution
of Pika-L does not improve mapping results. Such fine

detail makes classification more difficult. In fact, Pika-L with
2 m resolution improves, in general, the overall accuracy.
For the considered scenario and the benthic classes to
be discriminated, from the 3 different resolutions assessed
(10 cm, 2 m and 10 m), 2m provides the highest accuracy.
Specifically, WV-2 reaches an overall accuracy of 97.8%
using SVM.

Concerning the spectral resolution, hyperspectral data does
not provide a clear benefit over multispectral. In particular,
comparing Pika-L and WorldView-2, both at the same spatial
resolution, the multispectral data is more accurate in the
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FIGURE 11. Zoom of an area of the SVM maps of Figure 10 (the same legend of colors applies): (a) WV-2 pansharpened
GS. (b) CASI with 10 MNF components. (c) Pika-L with 10 MNF components.

majority of experiments performed. On the other hand,
similar accuracies are reached for WorldView-2 using SVM
with either 8 or 4 bands, and even better results using 4 bands
with the ML classifier. Actually, very few bands reach the
seafloor and the coastal blue of WV-2 is much noisier than
the blue channel. On the other hand, dimensionality reduction
transforms have demonstrated similar or even better classifi-
cation performances, as in previous studies [5], [7] and with
faster computation times.

Regarding the sensors, WorldView-2 has demonstrated,
in general, a superior performance. The RPAS platform
equipped with the hyperspectral sensor generates good maps
but does not provide the best accuracy. Finally, Sentinel-2 is
a good choice if it is not necessary to precisely outline the
Posidoniameadows, providing the capability to get open and
periodic imagery.

The analysis of the classification algorithms demonstrates
that ML and SVM perform properly, although SVM achieves
higher accuracies for all the sensors and ROIs datasets.
Actually, results are similar except for the ROI with very few
training pixels. It can be noted thatML classifier performance
is more dependent on the training ROIs since the standard
deviation is greater, indicating major differences in accuracy
when the classification is repeated with different training
areas. On average, for the 18 ROIs used, the variability
(standard deviation) of ML is approximately twice that of
SVM (3.3 vs. 1.7).

In any case, different factors affect the accuracy of
seagrass mapping using remote sensing like: cloud cover,
wind speed, sun angle, secchi depth, etc. [9]. Therefore,
if possible, optimal conditions should be selected for the
imagery acquisition.

C. MOUNTAIN MONITORING
The Teide National Park faces important challenges. The
most relevant is the drop in the S. supranubius population,
as a result of a rise in temperatures, drought episodes, and the
growth in the rabbit populations [42]. Remote sensing can
provide key information to analyze the conservation status of
this area.

In general, the accuracy obtained by the satellite multispec-
tral data and the hyperspectral airborne and RPAS imagery is
excellent and very similar, highlighting the minor relevance

of having a large number of channels if the appropriate date
is selected (May/June) and provided that the pixel size is
less than one meter. The Pika-L image should have achieved
the highest accuracy; however, the difficulty to properly
mosaic all the image strips and the radiometric differences
between them, due to changes in solar radiation caused by
clouds, meant a slight decrease in performance. In summary,
the most appropriate platform to generate the vegetation
maps, taking into account cost, coverage and accuracy, is the
WorldView-2 platform applying pansharpening techniques.
Certainly, if WorldView-3 imagery is available it would be a
better choice, taking into account the improved resolution of
the panchromatic (31 cm) and multispectral bands (1.24 m).
Worldview imagery is not free but its cost is affordable to
cover areas of tens or hundreds of square kilometers.

Fig. 9 demonstrates that higher classification errors for
WorldView-2 and CASI are due to D. bourgaeana because
of its small size and low density that, mainly, means a
misclassification with soil pixels. In fact, when these limiting
factors (size and density) are not affecting, as for the Pika-L
data, classification accuracy is highest. The remaining species
are, in general, properly discriminated by all the platforms.
Actually, according to the separability analysis performed
during the training phase, the pairs of plant species with worst
spectral separability were P. canariensis – S. supranubius and
S. supranubius – P. lasiospermus. In any case, even for the
WorldView-2 sensor, which has the worse spectral and spatial
resolutions, the Jeffries-Matusita distance [43] for these pairs
is quite good, with values over 1.9 (a perfect separability
is 2).

It is important to emphasize the great climatic and spatial
variability of the Park, due to its topography, where, for
the selected date, the same plant species can be in different
phenological phases (leafing, flowering, senesce). This fact
makes the mapping process very challenging due to the
significant variations in the spectral signatures, as it can be
appreciated in Fig. 9(c). Accordingly, unmixing techniques
were not suitable, even those using advanced algorithms that
take into account the endmembers spectral variability.

Finally, it is worth mentioning that the main limitation
in the use of SVMs is the need to select the suitable
parameter values in order to improve its accuracy. Critical
parameters for the Gaussian kernel are gamma (γ ) and the
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penalty (C) that controls the trade-off between allowing
training errors and forcing rigid margins. Unfortunately,
the best values are not known beforehand and, usually,
a "grid-search" using cross-validation is applied to select
them, first considering a coarse grid followed by a refined
search around the former optimal parameters. Default values
can be applied (γ = inverse of the number of bands and
C = 100) with good results but, if an additional improvement
is desired, this time consuming optimization procedure has
to be carried out. Random Forest could be an alternative
machine learning classifier that provides similar accuracy, but
SVMusually achieves superior accuracy for the classification
of hyperspectral and multispectral images. Recently deep
learning algorithms have gained the researchers’ attention;
however, they require a large amount of training data and
the developed models remain highly context and sensor
dependent. In addition, most of the pre-trained deep learning
networks are limited to 3 input bands, and therefore are not
directly applicable to hyperspectral imagery.

V. CONCLUSION
Seagrass meadows in coastal areas as well as endemic
vegetation in mountain ecosystems have to be sustainably
preserved. In this context, analyzing very high resolution
multiplatform remote sensing imagery can be an essential
monitoring tool for conservation managers.

In this work, a complete processing methodology for the
mapping of Posidonia oceanica and high mountain vegeta-
tion has been developed to monitor coastal and mountain
ecosystems.Multispectral and hyperspectral data recorded by
satellite and airborne sensors have been used and the benefits
and drawbacks of each technology identified. Advanced
processing algorithms in each stage of the methodology
have been carefully chosen to provide accurate benthic and
vegetation maps. Results have been validated using in-situ
measurements collected during field campaigns and by the
Park managers.

In summary, the assessment has demonstrated the excellent
performance of high resolution hyperspectral and multispec-
tral imagery and, specifically, the WorldView-2 satellite,
applying the appropriate correction, enhancement and clas-
sification techniques, can be a suitable sensor, providing a
robust and systematic framework to monitor the status and
variability of coastal and mountain areas.

Future studies will focus on analyzing changes using
multitemporal imagery and on the application of deep
learning techniques to generate benthic and vegetation maps.
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