
remote sensing

Article

Real-Time Hyperspectral Data Transmission for UAV-Based
Acquisition Platforms

José M. Melián * , Adán Jiménez, María Díaz, Alejandro Morales, Pablo Horstrand , Raúl Guerra ,
Sebastián López and José F. López

����������
�������

Citation: Melián, J.M.; Jiménez, A.;

Díaz, M.; Morales, A.; Horstrand, P.;

Guerra, R.; López, S.; López, J.F.

Real-Time Hyperspectral Data

Transmission for UAV-Based

Acquisition Platforms. Remote Sens.

2021, 13, 850. https://doi.org/

10.3390/rs13050850

Academic Editors: Vladimir Lukin,

Benoit Vozel and Joan Serra-Sagristà

Received: 22 January 2021

Accepted: 22 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC),
35001 Las Palmas, Spain; ajimenez@iuma.ulpgc.es (A.J.); mdmartin@iuma.ulpgc.es (M.D.);
amorales@iuma.ulpgc.es (A.M.); phorstrand@iuma.ulpgc.es (P.H.); rguerra@iuma.ulpgc.es (R.G.);
seblopez@iuma.ulpgc.es (S.L.); lopez@iuma.ulpgc.es (J.F.L.)
* Correspondence: jmelian@iuma.ulpgc.es

Abstract: Hyperspectral sensors that are mounted in unmanned aerial vehicles (UAVs) offer many
benefits for different remote sensing applications by combining the capacity of acquiring a high
amount of information that allows for distinguishing or identifying different materials, and the
flexibility of the UAVs for planning different kind of flying missions. However, further developments
are still needed to take advantage of the combination of these technologies for applications that require
a supervised or semi-supervised process, such as defense, surveillance, or search and rescue missions.
The main reason is that, in these scenarios, the acquired data typically need to be rapidly transferred
to a ground station where it can be processed and/or visualized in real-time by an operator for
taking decisions on the fly. This is a very challenging task due to the high acquisition data rate of the
hyperspectral sensors and the limited transmission bandwidth. This research focuses on providing
a working solution to the described problem by rapidly compressing the acquired hyperspectral
data prior to its transmission to the ground station. It has been tested using two different NVIDIA
boards as on-board computers, the Jetson Xavier NX and the Jetson Nano. The Lossy Compression
Algorithm for Hyperspectral Image Systems (HyperLCA) has been used for compressing the acquired
data. The entire process, including the data compression and transmission, has been optimized and
parallelized at different levels, while also using the Low Power Graphics Processing Units (LPGPUs)
embedded in the Jetson boards. Finally, several tests have been carried out to evaluate the overall
performance of the proposed design. The obtained results demonstrate the achievement of real-time
performance when using the Jetson Xavier NX for all the configurations that could potentially be used
during a real mission. However, when using the Jetson Nano, real-time performance has only been
achieved when using the less restrictive configurations, which leaves room for further improvements
and optimizations in order to reduce the computational burden of the overall design and increase
its efficiency.

Keywords: real-time compression; on-board compression; real-time transmission; hyperspectral
images; UAVs

1. Introduction

During the last years, there has been a great interest in two very different technologies that
have demonstrated to be complementary, unmanned aerial vehicles (UAVs) and hyperspectral
imaging. In this way, the combination of both allows to extend the range of applications
in which they have been independently used up to now. In one hand, UAVs have been
employed in a great variety of uses due to the advantages that these vehicles have over
traditional platforms, such as satellites or manned aircrafts. Among these advantages are the
high spatial and spectral resolutions that can be reached in images obtained from UAVs, the
revisit time and a relative low economical cost. The monitoring of road-traffic [1–4], searching

Remote Sens. 2021, 13, 850. https://doi.org/10.3390/rs13050850 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1656-6274
https://orcid.org/0000-0002-5488-1654
https://orcid.org/0000-0002-4303-3051
https://orcid.org/0000-0002-2360-6721
https://doi.org/10.3390/rs13050850
https://doi.org/10.3390/rs13050850
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13050850
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/5/850?type=check_update&version=2

Remote Sens. 2021, 13, 850 2 of 23

and rescuing operations [5–7], or security and surveillance [8,9] are some examples of civil
applications that have adopted UAVs-based technologies. On the other hand, hyperspectral
imaging technology has also gained an important popularity increment due to the high
amount of information that this kind of images is able to produce, which is specially valuable
for applications that need to detect or distinguish different kind of materials that may look like
very similar in a traditional digital image. Accordingly, it can be inferred that the combination
of these two technologies by mounting hyperspectral cameras onto drones would bring
important advances in fields like real-time target detection and tracking [10].

Despite the benefits that can be obtained combining UAVs and hyperspectral technol-
ogy, it is necessary to take into account that both also have important limitations. Referring
to UAVs, they have a flight autonomy that is limited by the capacity of their batteries, a
restriction that gets worse as the weight carried by the drone increases with additional
elements, such as cameras, gimbal, on-board PC, or sensors. In reference to the hyperspec-
tral technology, the analysis of the large quantity of data provided by this kind of cameras
to extract conclusions for the targeted application implies a high computational cost and
makes it difficult to achieve real-time performance. So far, two main approaches have been
followed in the state-of-the-art of hyperspectral UAVs-based applications:

1. Storing the acquired data into a non-volatile memory and off-board processing it
once back in the laboratory. The main advantage of this approach is its simplicity and
the possibility of processing the data without any limitation in terms of computational
resources. However, it is not viable for applications that require a real-time response,
and it does not allow the user to visualize the acquired data during the mission. For
instance, following this strategy, the drone could fly over a region, scan it with the
hyperspectral camera, and store all of the acquired data into a solid state drive (SSD),
so, once the drone lands, it is powered off and the disk is removed for extracting the
data and processing it [11–13]. However, if, by any reason, the acquisition parameters
were not correctly configured or the data was not captured as expected, this will not
be detected until finishing the mission and extracting the data for its analysis.

2. On-board processing the acquired hyperspectral data. This is a more challenging ap-
proach due to the high data acquisition rate of the hyperspectral sensors as well as the
limited number of computational resources available on-board. Its main advantage
is that the acquired data could be potentially analysed in real-time or near real-time
and, so, decisions could be taken on the fly according to the obtained results. However,
the data analysis methods that can be on-board executed are very limited [10,14,15].
Additionally, since, while following this approach, the data are fully processed on-board
and never transmitted to the ground station during the mission, it cannot be used for
any supervised or semi-supervised application in which an operator is required for
visualizing the acquired data or its results and taking decisions according to it. Some
examples of this kind of applications are surveillance and search and rescue missions.

This work focuses on providing an alternative solution for a UAV-based hyperspectral
acquisition platform to achieve greater flexibility and adaptability to a larger number
of applications. Concretely, the aforementioned platform consists of a visible and near-
infrared (VNIR) camera, the Specim FX10 pushbroom scanner, [16] mounted on a DJI
Matrice 600 [17], which also carries a NVIDIA Jetson board as on-board computer. A
detailed description of this platform can be found in [10]. Two different Jetson boards have
been used in the experiments and it can be set in the platform as on-board computer, the
Jetson Nano [18] and the Jetson Xavier NX [19]. They are both pretty similar in shape and
weight, although the Jetson Xavier NX has a higher computational capability as well as a
higher price.

The main goal of this work is to provide a working solution that allows us to rapidly
download the acquired hyperspectral data to the ground station. Once the data are in the
ground station, they could be processed in a low latency manner and both the hyperspectral
data or the results obtained after the analysis could be visualized by an operator in real-time.
This is advantageous for many applications that involve a supervised or semi-supervised

Remote Sens. 2021, 13, 850 3 of 23

procedure, such as defense, surveillance, or search and rescue missions. Currently, these
kind of applications are mostly carried out by using RGB first person view cameras [1,2],
but they do not take advantage of the possibilities that are offerred by the extra information
provided by the hyperspectral sensors. Figure 1 graphically describes the desired targeted
solution. To achieve this goal, it is assumed that a Wireless Local Area Network (WLAN)
based on the 802.11 standard, which was established by the Institute of Electrical and
Electronics Engineers (IEEE), will be available during the flight, and that both the on-board
computer and the ground station will be connected to it to use it as data downlink. It will
be considered to be real-time transmissions those situations in which the acquisition frame
rate and the transmission frame rate reach the same value, although there may be some
latency between the capturing process and the transmission one.

Figure 1. Overall description of the targeted design purpose.

According to our experience in the flight missions carried up to now, the frame rate of
the Specim FX10 camera mounted in our flying platform is usually set to a value between
100 and 200 frames per second (FPS) and, so, these are the targeted scenarios to be tested
in this work. The Specim FX10 camera produces hyperspectral frames of 1024 pixels with
up to 224 spectral bands each, storing them using 12 or 16 bits per pixel per band (bpppb).
This means that the acquisition data rate goes from 32.8 MB/s (100 FPS and 12 bpppb) to
87.5 MB/s (200 FPS and 16 bpppb). These values suggest the necessity of carrying out
the hyperspectral data compression before its transmission to the ground station in order
to achieve real-time performance. For that purpose, the Lossy Compression Algorithm for
Hyperspectral Image Systems (HyperLCA) has been chosen. This specific compressor has
been selected due to the fact that it offers several advantages with respect to other state-
of-the art solutions. One one side, it presents a low computational complexity and high
level of parallelism in comparison with other transform-based compression approaches.
On the other side, the HyperLCA compressor is able to achieve high compression ratios
while preserving the relevant information for the ulterior hyperspectral applications. Ad-
ditionally, the HyperLCA compressor independently compresses blocks of hyperspectral
pixels without any spatial alignment required, which makes it especially advantageous for
compressing hyperspectral data that were captured by pushbroom or whiskbroom sensors

Remote Sens. 2021, 13, 850 4 of 23

and providing a natural error-resilience behaviour. All of these advantages were deeply
analyzed in [20].

The data compression process reduces the amount of data to be downloaded to the
ground station, which makes the achievement of a real-time data transmission viable. How-
ever, it is also necessary to achieve a real-time performance in the compression process. For
doing so, the HyperLCA compressor has been parallelized taking advantage of the available
LPGPU included in the Jetson boards as it was done in [21]. However, multiple additional
optimizations have been developed in this work with respect to the one presented in [21] to
make the entire system work as expected, encompassing the capturing process, the on-board
data storing, the hyperspectral data compression and the compressed data transmission.

The document is structured, as follows. Section 2 contains the description of the algo-
rithm used in this work for the compression of the hyperspectral data. Section 3 displays the
information of the on-board computers that have been tested in this work. The proposed
design for carrying out the real-time compression and transmission of the acquired hyper-
spectral data is fully described in Section 4.1. Section 4.2 contains the data and resources that
are used for the experiments and Section 5 shows the description of the experiments and
obtained results. Finally, the obtained conclusions are summarized in Section 7.

2. Description of the HyperLCA Algorithm

The HyperLCA compressor is used in this work to on-board compress the hyperspec-
tral data, reducing its volume before being transmitted to the ground station, as it was
previously specified. This compressor is a lossy transform-based algorithm that presents
several advantages that satisfy the necessities of this particular application very well. The
most relevant are [20]:

• It is able to achieve high compression ratios with reasonable good rate-distortion
ratios and keeping the relevant information for the ulterior hyperspectral images
analysis. This allows considerably reducing the data volume to be transmitted without
decreasing the quality of the results obtained by analyzing the decompressed data in
the ground station.

• It has a reasonable low computational cost and it is highly parallelizable. This allows
for taking advantage of the LPGPU available on-board to speed up the compression
process for achieving a real-time compression.

• It permits independently compressing each hyperspectral frame as it is captured. This
makes possible to compress and transmit the acquired frames in a pipelined way, enabling
the entire system to continuously operate in an streaming fashion, with just some latency
between the acquired frame and the frame received in the ground station.

• It permits setting the minimum desired compression ratio in advance, making it possible
to fix the maximum data rate to be transmitted prior to the mission, thus ensuring that it
will not saturate the donwlink.

The compression process within the HyperLCA algorithm consists of three main com-
pression stages, which are a spectral transform, a preprocessing stage, and the entropy coding
stage. In this work, each compression stage independently processes one single hyperspectral
frame at a time. The spectral transform sequentially selects the most different pixels of the
hyperspectral frame using orthogonal projection techniques. The set of selected pixels is then
used for projecting this frame, obtaining a spectral decorrelated and compressed version of
the data. The preprocessing stage is executed after the spectral transform for adapting the
output data for being entropy coded in a more efficient way. Finally, the entropy coding
stage manages the codification of the extracted vectors using a Golomb–Rice coding strategy.
In addition to these three compression stages, there is one extra initialization stage, which
carries out the operations that are used for initializing the compression process according to
the introduced parameters. Figure 2 graphically shows these compression stages, as well as
the data that the HyperLCA compressor share between them.

Remote Sens. 2021, 13, 850 5 of 23

Figure 2. Flowchart of the HyperLCA compressor.

2.1. HyperLCA Input Parameters

The HyperLCA algorithm needs three input parameters in order to be configured:

1. Minimum desired compression ratio (CR), defined as the relation between the num-
ber of bits in the real image and the number of bits of the compressed data.

2. Block size (BS), which indicates the number of hyperspectral pixels in a single hyper-
spectral frame.

3. Number of bits used for scaling the projection vectors (Nbits). This value determines
the precision and dynamic range to be used for representing the values of the V vectors.

2.2. HyperLCA Initialization

Once the compressor has been correctly configured, its initialization stage is carried out.
This initialization stage consists on determining the number of pixel vectors and projection
vectors (pmax) to be extracted for each hyperspectral frame, as shown in Equation (1),
where DR refers to the number of bits per pixel per band of the hyperspectral image to be
compressed and Nbands refers to the number of spectral bands. The extracted pixel vectors
are referred as P and the projection vectors are referred as V in the rest of this manuscript.

pmax ≤
DR · Nbands · BS

CR · (DR · Nbands + Nbits · BS)
(1)

The pmax value is used as an input of the HyperLCA transform, which is the most
relevant part of the HyperLCA compression process. The compression that is achieved
within this process directly depends on the number of selected pixels, pmax. Selecting more
pixels provides better decompressed images, but lower compression ratios.

2.3. HyperLCA Transform

For each hyperspectral frame, the HyperLCA Transform calculates the average pixel,
also called centroid. Subsequently, the centroid pixel is used by the HyperLCA Transform

Remote Sens. 2021, 13, 850 6 of 23

to select the first pixel as the most different from the average. This is an unmixing like
strategy used in the HyperLCA compressor for selecting the most different pixels of the
data set to perfectly preserve them through the compression–decompression process. This
results in being very useful for many remote sensing applications, like anomaly detection,
spectral unmixing, or even hyperspectral and multispectral image fusion, as demonstrated
in [22–24].

The HyperLCA Transform provides most of the compression ratio that was obtained
by the HyperLCA compressor and also most of its flexibility and advantages. Additionally,
it is the only lossy part of the HyperLCA compression process. Algorithm 1 describes, in
detail, the process followed by the HyperLCA Transform for a single hyperspectral frame.
The pseudocode assumes that the hyperspectral frame is stored as a matrix, M, with the
hyperspectral pixels being placed in columns. The first step of the HyperLCA Transform
consists on calculating the centroid pixel, c, and subtracting it to each pixel of M, obtaining
the centralized frame, Mc. The transform modifies the Mc values in each iteration.

Figure 3 graphically describes the overall process that is followed by the HyperLCA
Transform for compressing a single hyperspectral frame. As shown in this figure, the
process that is followed by the HyperLCA Transform mainly consists of three steps that
are sequentially repeated. First, the brightest pixel in Mc, which is the pixel with more
remaining information, pi, is selected (lines 2 to 7 of Algorithm 1). After doing so, the vector
vi is calculated as the projection of the centralized frame, Mc, in the direction spanned
by pi (lines 8 to 10 of Algorithm 1). Finally, the information of the frame that can be
represented with the extracted pi and vi vectors is subtracted from Mc, as shown in line 11
of Algorithm 1.

Figure 3. Flowchart of the HyperLCA Transform.

Accordingly, Mc contains the information that is not representable with the already
selected pixels, P, and V vectors. Hence, the values of Mc in a particular iteration, i, would
be the information lost in the compression–decompression process if no more pixels pi and
vi vectors are extracted.

Remote Sens. 2021, 13, 850 7 of 23

Algorithm 1 HyperLCA transform.

Inputs:

M = [r1, ..., rNp], pmax

Outputs:

c, P = [p1, ..., ppmax], V = [v1, ..., vpmax]

Declarations:

c; {Centroid pixel.}
P = [p1, ..., ppmax]; {Extracted pixels.}
V = [v1, ..., vpmax]; {Projected image vectors.}
Mc = [x1, ..., xNp]; {Centralized version of M.}
Algorithm:

1: {Centroid calculation and frame centralization (c, Mc)}
2: for i = 1 to pmax do

3: for j = 1 to Np do

4: bj = xj
t · xj

5: end for

6: jmax = arg max(bj)

7: pi = rjmax

8: q = xjmax

9: u = xjmax /((xjmax)
t · xjmax)

10: vi = ut ·Mc

11: Mc = Mc − vi · q
12: end for

2.4. HyperLCA Preprocessing

This stage is crucial in the HyperLCA compression algorithm to adapt the HyperLCA
Transform output data for being entropy coded in a more efficient way. This compression
stage encompasses two different parts.

2.4.1. Scaling V Vectors

After executing the HyperLCA Transform, the resulting V vectors contain the projec-
tion of the frame pixels into the space spanned by the different orthogonal projection vector
ui in each iteration. This results in floating point values of V vector elements between −1
and 1. These values need to be represented using integer data type for their codification.
Hence, vectors V can be easily scaled in order to fully exploit the dynamic range available
according to the Nbits used for representing these vectors and avoid loosing too much
precision in the conversion, as shown Equation (2). After doing so, the scaled V vectors are
rounded to the closest integer values.

vjscaled
= (vj + 1) · (2Nbits−1 − 1) (2)

2.4.2. Error Mapping

The entropy coding stage takes advantage of the redundancies within the data to assign
the shortest word length to the most common values in order to achieve higher compression
ratios. In order to facilitate the effectiveness of this stage, the output vectors of the HyperLCA
Transform, after the preprocessing of V vectors, are independently lossless processed to
represent their values using only positive integer values closer to zero than the original
ones, using the same dynamic range. To do this, the HyperLCA algorithm makes use of the

Remote Sens. 2021, 13, 850 8 of 23

prediction error mapper described in the Consultative Committee for Space Data Systems
(CCSDS) that are recommended standard for lossless multispectral and hyperspectral image
compression [25].

2.5. HyperLCA Entropy Coding and Bitstream Generation

The last stage of the HyperLCA compressor corresponds to a lossless entropy coding
strategy. The HyperLCA algorithm makes use of the Golomb–Rice algorithm [26] where
each single output vector is independently coded.

Finally, the outputs of the aforementioned compression stages are packaged in the
order that they are produced, generating the compressed bitstream. The first part of the
bitstream consists of a header that includes all of the necessary information to correctly
decompress the data.

The detailed description of the coding methodology followed by the HyperLCA
compressor as well as the exact structure of the compressed bitstream can be found in [20].

3. On-Board Computers

The on-board computer is one of the key elements of the entire acquisition platform,
as described in [10]. It is in charge of managing the overall mission, controlling the UAV
actions and flying parameters (direction, speed, altitude, etc.), as well as the data acquisition
controlling all of the sensors available on-board, including the Specim FX10 hyperspectral
camera. For doing so, two different Nvidia Jetson boards have been separately tested in
this work, the Jetson Nano [18] and the Jetson Xavier NX [19]. These two boards present
very good computational capabilities as well as many connection interfaces that facilitate
the integration of all the necessary devices into the system, while, at the same time, are
characterized by a high computational capability in relation to their reduced size, weight
and power consumption. Additionally, their physical characteristics are generally better
than the ones that are presented by the Jetson TK1, the board originally used in the first
version of our UAV capturing platform, described in [10]. This is a remarkable point when
taking into account the restrictions in terms of available space and load weight in the drone.
Table 1 summarizes the main characteristics of the Jetson TK1, whereas, in Tables 2 and 3,
the main characteristics of the two Jetson boards tested in this work are summarized.

In addition to the management of the entire mission and acquisition processes, the
on-board computer is also used in this work for carrying out the necessary operations to
compress and transmit in real-time the acquired hyperspectral data to the ground station.
For doing so, the compression process, which is the most computational demanding
one, has been accelerated while taking advantage of the LPGPUs integrated into these
Jetson boards.

Table 1. Technical specifications of the NVIDIA Jetson TK1 development board used in the original
flight platform.

Board Model Jetson TK1

LPGPU GPU NVIDIA Kepler with 192 CUDA cores (uptto 326 GFLOPS)(Model GK20)

CPU NVIDIA 2.43 GH < ARM quad-core CPU with Cortex A15 battery saving shadow core

Memory 16GB fast eMMC 4.51 (routed to SDMMC4)

Weight 500 g

Dimensions 127 × 127 × 25.4 mm

Power consumption 1 W minimum

By default, both the Jetson Nano and Jetson Xavier NX are prepared for running the
operating system in a Secure Digital card (SD). However, this presents limitations in terms of
memory speed as well as in the maximum amount of data that can be stored. To overcome
this issue, an external SSD that is connected through an USB3.0 port has been used in the
Jetson Nano. The Jetson Xavier NX is already prepared to integrate a Non-Volatile Memory

Remote Sens. 2021, 13, 850 9 of 23

Express (NVMe) 2.0 SSD keeping the system more compact and efficient. However, this
memory was not yet available during this work and, hence, all of the experiments executed in
the Jetson Xavier NX were carried out using just the SD card memory.

Additionally, a Wifi antenna is required. to be able to connect to the WLAN to transmit
the compressed hyperspectral data to the ground station. While the Jetson Xavier NX already
integrates one, the Jetson Nano does not. Hence, an external USB2.0 TP-Link TL-WN722N Wifi
antenna [27] has been included in the experiments that were carried out using the Jetson Nano.

Table 2. Technical specifications of the NVIDIA Jetson Nano and NVIDIA Jetson Xavier NX.

Board Model Jetson Nano

LPGPU GPU NVIDIA Maxwell with 128 CUDA cores (Model GM200)

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Weight 140 g

Dimensions 99.06 × 78.74 × 27.94 mm

Power consumption 5W minimum

Board model Jetson Xavier NX

LPGPU GPU NVIDIA Volta with 384 CUDA cores and 48 Tensor Cores (Model GV100)

CPU 6-core NVIDIA Carmel ARM v8.2 64-bit CPU + 6MB L2 + 4MB L3

Memory 8 GB 128-bit LPDDR4x 51.2 GB/s

Weight 180 g

Dimensions 99.06 × 78.74 × 27.94 mm

Power consumption 10 W minimum

Table 3. Technical specifications of the LPGPU in NVIDIA Jetson Nano and NVIDIA Jetson Xavier NX.

Technical Specifications GM200 GV100

LPGPU Jetson Nano Jetson Xavier NX

Number of CUDA cores 640 384

Number of Tensor Cores - 48

Number of Streaming multiprocessors (SM) 5 6

Compute Capability 5.2 7.0

Warp Size 32 32

Maximum blocks per SM 32 32

Maximum warps per SM 64 64

Maximum threads per SM 2048 2048

32 bit registers per SM 64 KB 64 KB

Maximum shared memory per SM 96 KB 96 KB

4. Materials and Methods
4.1. Proposed Methodology

As already mentioned, the goal of this work is to provide a working solution that al-
lows for rapidly downloading the acquired hyperspectral data to the ground station, where
it could be visualized in real-time. It is assumed that a WLAN will be available during the
flight, and that both the on-board computer and the ground station will be connected to it
to use it as data downlink. Additionally, it is necessary to independently compress each
acquired hyperspectral frame in real-time, so that it can be rapidly transferred to the ground
station without saturating the donwlink. A previous work was already published, where
the viability of carrying out the real-time compression of the hyperspectral data using the
HyperLCA algorithm and some NVIDIA Jetson boards was tested [21]. In that work, it

Remote Sens. 2021, 13, 850 10 of 23

was assumed that the hyperspectral data that were collected by the Specim FX10 camera
would be directly placed in Random-access memory (RAM), and that the compression
process would directly read from it. Figure 4 graphically shows the workflow that was
proposed in that work.

Figure 4. Previous work design for the real-time compression of the hyperspectral data.

Ring buffers are used to prevent the saturation of the RAM memory of the board.
These ring buffers allow for a maximum number of frames to be stored at the same time in
the memory. Once that the last position of the ring buffer is written, it returns to the first
one, overwriting the information that is present in this position. This methodology is able to
achieve real-time performance and very high compression speeds, as demonstrated in [21].
For doing so, the HyperLCA Transform, which is the most computational demanding part
of the HyperLCA compressor, has been implemented into the LPGPU that is available in
the Jetson board using a set of self developed kernels that were programmed using CUDA.
However, this methodology presents some weaknesses that need to be overcome for the
purpose of this work:

• Information lost if any part of the process delays. If anything affects the perfor-
mance of the compression or transmission process during the mission, so that one
of them is delayed, part of the hyperspectral data will be lost. This is due to the fact
that the data are never written to a non-volatile memory on-board, and that the ring
buffers will be overwritten after a while.

• Original uncompressed data are not preserved. The captured hyperspectral frames
are just stored in the corresponding ring buffer in RAM memory, from where it is read
by the compression process. However, they are never stored in a non-volatile memory
and, hence, just the compressed-decompressed data will be available for the analysis.
Because the HyperLCA compressor is a lossy transform-based one, the original data
cannot be recovered.

• Restricted input data format. The overall compression process that is presented in [21]
was developed assuming that the captured hyperspectral frames would be placed in the
RAM memory in Band Interleaved by Pixel (bip) format using 16 bits unsigned integer
values and coded in little-endian. However, many of the hyperspectral pushbroom
cameras, such as the Specim FX10, work in Band Interleaved by Line (bil) format and
use different precision and endianness.

• Real-time data transmission not tested. While, in [21], it was proved that it was pos-
sible to achieve real-time compression performance using the HyperLCA compressor
in the Jetson boards, the transmission to the ground station was not tested.

A new design is proposed in this work to overcome these weaknesses and achieve the
desired performance. Figure 5 shows a graphic description of this design.

The main changes with respect to the design previously proposed in [21] are:

Remote Sens. 2021, 13, 850 11 of 23

• Acquired frames and compressed frames are stored in non-volatile memory. Each
acquired hyperspectral frame is independently stored in a single file in the non-volatile
memory of the on-board computer. Both the compression and transmission processes
read from these files. By doing so, it is guaranteed that all of the frames will be
compressed and transmitted to the ground station, even if a delay occurs in any
process. Additionally, the original uncompressed hyperspectral data can be extracted
from the on-board computer once that the mission finishes and the UAV lands.

• Flexible input data format. The compression process has been adapted to be able
to process data in different input formats and data types, namely (bip and bil, little-
endian, and big-endian), as well as being able to adapt to 12 and 16 bits resolutions.
This makes the proposed design more flexible and adaptable to different hyperspectral
cameras.

• Real-time data transmission tested. The transmission of the compressed hyperspec-
tral data from the on-board computer to the ground station has been tested in this
work, thus verifying the possibility of achieving real-time performance.

Each of these changes is explained in detail in the subsequent sections.

Figure 5. Proposed design for the real-time compression and transmission of the hyperspectral data.

4.1.1. Use of Non Volatile Memory

As previously mentioned, in the design that is described in [21], both the captured
frames and the compressed frames are stored in ring buffers in RAM memory. This may
result in frames being lost if any of the compression or transmission processes delay during
mission. In order to avoid this potential failure, the design proposed in this work stores
each frame captured by the Specim FX10 hyperspectral camera as a single file in non-
volatile memory. These files are read to feed the compression process, and the compressed
bitstreams for each frame are also stored as files to non-volatile memory. By doing so, even
if the compression or transmission process delays for a while, all of the frames will be
compressed and transmitted to the ground station with a certain latency. Additionally, the
original frames keep being stored in the on-board computer and they can be extracted from
it once the mission finishes and the UAV lands.

Despite the clear advantages of this new methodology, it also presents some limitations.
First of all, the writing and reading speed in the non-volatile memory is usually lower than
the corresponding speed of the RAM memory, thus making it more challenging to achieve
real-time performance. Additionally, it is necessary to add new steps to the overall process

Remote Sens. 2021, 13, 850 12 of 23

to manage the writing and reading stages of the produced files and the synchronization
between the data capturing, compression, and transmission processes.

Different levels of parallelism have been employed in order to carry out this method-
ology. A graphic representation of the overall process is displayed in Figure 5. First of all, a
Python process (P1 in Figure 5) is executed using the Python module, named iNotify, which
permits event-driven-programing. This process reacts every time that a file is created in
the target directory by the capturing process, reading the stored hyperspectral frame and
then loading it into the RAM memory for the compression process (P2 in Figure 5).

Secondly, another process (referred to as P2 in Figure 5) reads the hyperspectral frames to
be compressed from the RAM memory, compresses them, and stores the resulting bitstream
in a new file. This process involves the execution of the HyperLCA Transform, implemented
in the LPGPU included in the Jetson board, and the HyperLCA entropy coder, executed in the
CPU. For synchronizing the processes included inside P2, a set of ring buffers and memory
pointers is used. Concretely, two shared memory ring buffers are used for transferring the
data between the different subprocesses:

• Input Frame Ring Buffer. Part of the shared memory where the hyperspectral data
to be compressed are placed.

• Transform Output Data. Part of the shared memory where the results of the Hyper-
LCA Transform are stored for its codification.

Additionally, four single shared memory pointers are used to synchronize the execu-
tion of the different parallel subprocesses:

• Last Captured Frame Index. Index indicating the last frame captured by the hyper-
spectral camera.

• Last Transformed Frame Index. Index specifying the last transformed frame.
• Last Coded Frame Index. Index indicating the last coded frame.
• Process Finished. Boolean value indicating if the overall process should stop.

Finally, another Python process (P3 in Figure 5) is executed using the Python module
named iNotify, together with the Python module, named Paramiko. This process reacts
every time that a compressed bitstream is written to a file by process P2 in the target
directory and transmits it to the ground station via SSH connection.

Altogether, these processes (P1 to P3) result in the next synchronized behavior, which
keeps allowing both the real-time compression and the real-time transmission processes
while at the same time is able to recover itself from losses of capabilities and permits to
analyze the original captured data after the drone lands and the data are extracted from
the disk.

1. The Specim FX10 VNIR sensor captures a new frame and stores it in a specific folder
placed into a non-volatile memory. In this moment, the Python module named iNotify,
which permits event-driven-programing, detects the creation of a new hyperspectral
file that is loaded into the Input Frame Ring Buffer and the Last Captured Frame Index is
increased. If the HyperLCA Transform is delayed, it is detected by this process by
checking the Last Tranformed Frame Index, preventing overwriting the data in the Input
Frame Ring Buffer until the HyperLCA Transform moves to the next frame.

2. The HyperLCA Transform is continuously checking the Last Captured Frame Index to
know when a new frame is loaded in the Input Frame Ring Buffer. In that moment, the
frame is copied from the shared memory to the device memory to be compressed by
the HyperLCA Transform. Once this process finishes, the corresponding bitstream is
copied to the Transform Output Data and the Last Transformed Frame Index is increased.
If the codification process delays, it is detected by this process by checking the Last
Coded Frame Index, preventing overwriting the data in the Transform Output Data Ring
Buffer until the HyperLCA Coder moves to the next frame.

3. The entropy coder is continuously checking the Last Transformed Frame Index to know
when a new frame has been compressed by the HyperLCA Transform and stored in

Remote Sens. 2021, 13, 850 13 of 23

the Transform Output Data. After that, the frame is coded by the entropy coder and the
resultant compressed frame is written into a specific folder within a non-volatile memory.

4. Once this file is written in the specific folder, the iNotify Python module detects this new
element and triggers the transmission process of the compressed frame to the ground
station via Secure Shell Protocol (SSH) while using the Python module, named Paramiko.

4.1.2. Flexible Input Data Format

As already described, the HyperLCA Transform stage, which was implemented into
the LPGPU available in the Jetson board in [21], expects the input data to be formatted as
16 bits unsigned integers, in little-endian and BIP order. In order to make it more flexible
and adaptable to any input data format, the first kernel of the HyperLCA Transform has
been replaced by a set of six new kernels that support the conversion from different input
data formats to the one that is required by the next kernel of the HyperLCA Transform.
Each of these kernels first converts the data to 16 bits unsigned integer, in little-endian and
BIP order, as expected by the previous version, and then casts these values to floating point
arithmetic, as it is required by the subsequent HyperLCA Transform operations. The kernel
to be executed in each case is selected from the CPU while taking the input format of the
hyperspectral frames to be compressed into account. The six new proposed kernels are:

• uint16_le_bip_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bip format and little-endian.

• uint16_be_bip_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bip format and big-endian.

• uint16_le_bil_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bil format and little-endian.

• uint16_be_bil_to_float. This kernel is used when the input image is formatted as
unsigned 16 bits integers, in bil format and big-endian.

• uint12_bip_to_float. This kernel is used when the input image is formatted as un-
signed 12 bits integers, in bip format.

• uint12_bil_to_float. This kernel is used when the input image is formatted as un-
signed 12 bits integers, in bil format.

4.1.3. Packing Coded Frames

As it has been stated before in Section 4.1.1, the hyperspectral data are transmitted
from the UAV to the ground station once the compressed frames are stored in non-volatile-
memory. In one hand, this is possible due to the use of the SSH protocol that establishes
a secured connection between the on-board computer that was installed on the drone
and the ground station. On the other hand, it is the Python module, named Paramiko,
which implements that SSH connection generating a client-server (drone-ground station)
functionality for the transmission of the hyperspectral information.

As already described, the compression process is individually applied to each frame
and, so, each single frame could be written to a single file. Because the transmission process
is triggered every time that a file is written in the specified location using the Python iNotify
module, the transmission process would be triggered once per frame and a SSH transmission
would be executed for each of them. However, this may lead to a situation in which the
overhead produced in the SSH connection for initiating the transmission of each data file is
closed to the time that is needed to transmit the data. Thereby, in order to overcome this
issue, the compression process may accumulate a certain amount of compressed frames to
write them all together in a single file, thus reducing the communication overhead at the
cost of slightly increasing the transmission latency. Figure 6 illustrates this strategy, where
each block corresponds to a compressed hyperspectral frame.

Remote Sens. 2021, 13, 850 14 of 23

Figure 6. Strategy of packing various compressed frames into a single file.

4.2. Data Set Used in the Experiments

The proposed design for the real-time hyperspectral data compression and trans-
mission has been tested in this work carrying out multiple experiments and using real
hyperspectral data that are captured by the aforementioned UAV-based acquisition plat-
form [10]. This design includes a compression stage using the HyperLCA algorithm, whose
performance, in terms of compression quality, has been evaluated in detail in previous
works [20,21,28]. Accordingly, this work exclusively focuses in the development and
validation of a design that can achieve a real-time hyperspectral data compression and
transmission in a real scenario.

An available hyperspectral dataset that was obtained from one of the performed
missions has been used to simplify the experiments execution and the evaluation process.
This image is a subset of the hyperspectral data collected during a flight campaign over a
vineyard area in a village called Tejeda located in the center of the island of Gran Canaria.
The exact coordinates of the scanned terrain are 27°59′35.6′′N 15°36′25.6′′W (graphically
indicated in Figure 7a. The flight was performed at a height of 45 m over the ground
and at a speed of 4.5 m/s with the hyperspectral camera capturing frames at 150 FPS.
This resulted in a ground sampling distance in line and across line of approximately 3 cm.
This flight mission consisted of 12 waypoints that provided six swathes, but just one of
them was used in the experiments that were carried out in this work. The ground area
covered by this swath is highlighted in the Google Map picture displayed in Figure 7b. In
particular, a smaller portion of 825 subsequent hyperspectral frames of 1024 pixels and 160
spectral bands each was selected for the experiments (as highlighted in Figure 7c. Despite
the Specim FX10 camera used for acquiring this data can collect up to 224 bands, the first
20 bands and the last 44 ones were discarded during the capturing process due to a low
Signal-to-Noise-Ratio (SNR), as described in [29].

Remote Sens. 2021, 13, 850 15 of 23

(a) (b)

N
(c)

Figure 7. Graphical description of the appearance and location of the terrain corresponding to the image used in this work
for the experiments. (a) Google Maps pictures indicating the terrain location on the island of Gran Canaria. (b) Google
Maps pictures indicating the area covered during the selected swath of the flight campaign over the vineyard. (c) RGB
respresentation of the real hyperspectral data, highlighting the portion of it that was used for the experiments.

Using the described hyperspectral image, an acquisition simulation process has been
developed, which independently stores each of the 825 hyperspectral frames as a single
file in a target directory and at user defined speed. This process has been used in the
experiments to emulate the camera capturing process with the possibility of controlling the
simulated capturing speed, while, at the same time, allowing for the execution of all the
experiments with the same data and in similar conditions.

The Specim FX10 camera used for collecting the aforementioned images measures
the incoming radiation using a resolution of 12 bpppb. However, it can be configured
in two different modes, 12-Packed and 12-Unpacked to store each value using 12, or 16
bpppb, respectively. In the 12-Unpacked mode, four zeros are padded at the beginning of
each sample. With independence of the mode used, the hyperspectral frames are always
stored in bil format. However, in order to test the proposed design with more details, the
acquired image has been off-board formatted to store it using different configurations.
On one side, it has been stored using the 12-Packed, bil format, which is the most efficient
format that is produced by the sensor. This has been labeled as uint12-bil in the results.
On the other side, it has been stored as 12-Unpacked, bip format, which is not a format that
can be directly produced by the sensor and requires reordering the data. Additionally,
this format requires more memory, which makes it less efficient. However, this format is
the one for which the reference HyperLCA compressor and its parallel implementation

Remote Sens. 2021, 13, 850 16 of 23

proposed in [21] were originally designed, and allows for using it without including any
of the additional data transformation described in Section 4.1.2. This has been labeled as
uint16-bip in the results. The results that could be obtained with any other combination of
data precision and samples order would be in the range of the results that were obtained
for these two combinations.

5. Results

Several experiments have been carried out in this work to evaluate the performance of
the proposed designed for real-time hyperspectral data compression and transmission. First,
the achievable transmission speed that could be obtained without compressing the acquired
hyperspectral frames is analyzed in Section 5.1. The obtained results verify that the data
compression is necessary for achieving a real-time transmission. Secondly, the maximum
compression speed that can be obtained without parallelizing the compression process using
the available GPU has been tested in Section 5.2. The obtained results demonstrate the neces-
sity of parallelizing the process using the available GPU to achieve real-time performance.
Finally, the results that can be obtained with the proposed design taking advantage of the
different levels of parallelism and the available GPU are tested in Section 5.3, demonstrating
its suitability for the real-time hyperspectral data compression and transmission.

In the following Tables 4–7, the simulated capturing speed and the maximum com-
pressing and transmission speeds are referred to as Capt, Comp, and Trans, respectively. In
addition, the WiFi signal strength is named Signal in the aforementioned tables of results, a
value that is directly obtained from the WLAN interface during the transmission process.

5.1. Maximum Transmission Speed without Compression

First of all, the maximum transmission speed that could be achieved if the acquired
frames were not compressed has been tested. For doing so, the targeted capturing speed
has been set to 100 FPS, since it is the lowest frame rate typically used in our flight missions.
Table 4 displays the obtained results.

Table 4. Transmission speed without compressing the frames.

Input Parameters Jetson Xavier NX Jetson Nano
Speed (FPS) Speed (FPS)

Format FPS Packing Capt Trans Signal Capt Trans Signal
uint12-bil 100 1 99 26 42/100 98 13 100/100
uint12-bil 100 5 103 36 45/100 101 18 100/100
uint16-bip 100 1 101 21 47/100 93 11 100/100
uint16-bip 100 5 100 30 38/100 105 15 100/100

As it can be observed, when independently transmitting each frame (Packing = 1), the
transmission speed is too low in relation to the capturing speed, even capturing at 100 FPS.
When transmitting five frames at a time, the transmission speed increases, but it is still
very low. It can also be observed that, when using the uint12-bil format, the transmission
speed is approximately 25 percent faster than when using the uint16-bip one. This makes
sense, since the amount of data per file when using the uint12-bil format is 25 percent lower
than the uint16-bip one. These results verify the necessity of compressing the acquired
hyperspectral data before transmitting it to the ground station.

Additionally, it can also be observed in the results that the Jetson Xavier NX is able
to achieve a higher transmission rate than the Jetson Nano, even if the Jetson Nano has a
higher WiFi signal strength. This could be due to the fact that the Jetson Nano is using an
external TP-Link TL-WN722N WiFi antenna that is connected through USB2.0 interface,
while the WiFi antenna used by the Jetson Xavier NX is integrated in the board.

5.2. Maximum Compression Speed without Gpu Implementation

Once the necessity of carrying out the compression of the acquired hyperspectral data
has been demonstrated, the necessity of speeding up this process by carrying out a parallel

Remote Sens. 2021, 13, 850 17 of 23

implementation is to be tested. For doing so, the compression process within the HyperLCA
algorithm has been serially executed in the CPU integrated in both boards for evaluating
the compression speed. The capturing speed has been set to the minimum value used in
our missions (100 FPS), as done in Section 5.1. The compression parameters have been
set to the less restrictive values typically used for the compression within the HyperLCA
algorithm (CR = 20 and Nbits = 12). From the possible combinations of input parameters
for the HyperLCA compressor, these values should lead to the fastest compression results
according to the analysis done in [21], where the HyperLCA compressor was implemented
onto a Jetson TK1 and Jetson TX2 developing boards. Additionally, the data format used
for this experiment is uint16-bip, since this is the data format for which the reference version
of the HyperLCA compressor is prepared. By using this data format, the execution of
extra data format transformations that would lead to slower results is prevented. Table 5
displays the obtained results.

Table 5. Compression speed without using parallelism.

Input Parameters Jetson Xavier NX Jetson Nano
Speed (FPS) Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Capt Comp
uint16-bip 20 12 100 1 103 23 96 9

The compression speed achieved without speeding up the process is too low and far
from a real-time performance, as it can be observed in Table 5. This demonstrates the necessity
of a parallel implementation that takes advantage of the available LPGPUs integrated in the
Jetson boards for increasing the compression speed. It can also be observed that the Jetson
Xavier NX offers a better performance that the Jetson Nano.

5.3. Proposed Design Evaluation

In this last experiment, the performance of the proposed design has been evaluated
for both the Jetson Xavier NX and the Jetson Nano boards. The capturing speed has been
set to the minimum and maximum values that are typically used in our flying missions,
which are 100 FPS and 200 FPS, respectively. Two different combinations of compression
parameters have been tested. The first one, CR = 20 and Nbits = 12, corresponds to the less
restrictive scenario and should lead to the fastest compression results according to [21].
Similarly, the second one, CR = 12 and Nbits = 8, corresponds to the most restrictive case and
it should lead to the slowest compression results, as demonstrated in [21]. Furthermore,
both the uint16-bip and uint12-bil data formats have been tested. Finally, the compressed
frames have been packed in two different ways, individually and in groups of 5. All of the
obtained results are displayed in Table 6.

The Jetson Xavier NX is always capable of compressing more than 100 frames per
second, regardless of the configuration used, as observed in Table 6. However, it is only
capable of achieving 200 FPS in the compression in the less restrictive scenario, which is
uint12-bil, CR = 20, Nbits = 12 and Packing = 5. Additionally, when capturing at 200 FPS,
there are other scenarios in which real-time compression is almost achieved, producing
compression speeds up to 190 FPS or 188 FPS. On the other hand, the Jetson Nano only
presents a poorer compression performance, achieving real-time compression speed in the
less restrictive scenario.

Regarding the transmission speed, it can be observed that, when packing the frames
in groups of five, the transmission speed is always the same as the compression speed,
but in the two fastest compression scenarios in which the compression speed reaches 200
and 188 FPS, the transmission speed stays at 185 and 162 FPS, respectively. This may be
to the fact that the WiFi signal strength is not high enough (36/100 and 39/100) in these
two tests. Nevertheless, two additional tests have been carried out for these particular
situations with the Jetson Xavier NX, whose results are displayed in Table 7. A real-time
transmission is achieved when increasing the packing size to 10 frames, as shown in this

Remote Sens. 2021, 13, 850 18 of 23

table. It can be also observed that in these two tests real-time compression has also been
achieved. This may be due to the fact that a lower number of files are being written and
read by the operating system. This suggests that a faster performance could be obtained in
the Jetson Xavier NX using a solid stage disk (SSD) instead of the SD card that has been
used so far in these experiments.

Table 6. Speed results for the proposed design.

Input Parameters Jetson Xavier NX Jetson Nano
Speed (FPS) Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Trans Signal Capt Comp Trans Signal

uint12—bil

20
12 100 1 104 104 75 48/100 93 93 56 100/100

5 106 106 106 37/100 101 101 101 100/100

200 1 197 190 77 47/100 185 105 59 100/100
5 202 200 185 36/100 208 110 110 100/100

12
8 100 1 104 104 69 48/100 91 44 44 100/100

5 104 104 104 37/100 94 44 44 100/100

200 1 205 140 73 47/100 205 44 44 100/100
5 187 138 138 37/100 187 45 45 100/100

uint16—bip

20
12 100 1 102 102 75 47/100 85 82 39 100/100

5 103 103 103 38/100 98 83 83 100/100

200 1 189 166 65 46/100 194 82 52 100/100
5 193 188 162 39/100 186 84 84 100/100

12
8 100 1 100 99 68 47/100 99 36 36 100/100

5 101 101 101 38/100 99 36 36 97/100

200 1 196 119 49 38/100 188 35 35 100/100
5 171 110 110 37/100 208 36 36 100/100

Table 7. Speed results for the proposed design when increasing the packing size to 10 frames.

Input Parameters Jetson Xavier NX
Speed (FPS)

Format CR Nbits FPS Packing Capt Comp Trans Signal

uint12-bil 20 12 200 10 206 206 206 37/100
uint16-bip 20 12 200 10 203 203 203 48/100

Additionally, the time at which each hyperspectral frame has been captured, com-
pressed, and transmitted in these two last experiments is graphically displayed in Figure 8.
Figure 8a shows the results that were obtained for the uint12-bil data format, while Figure 8b
shows the values that were obtained for the uint16-bip one. In these two graphics, it can be
observed how, on average, the slope of the line representing the captured frames (in blue
color), the line representing the compressed frames (in orange), and the line representing
the transmitted frames (in green color) is the same, indicating a real-time performance. It
can also be observed the effect of packing the frames in groups of 10 in the transmission
line. Finally, Figure 8a also shows the effect of a short reduction in the transmission speed
due to a lower WiFi signal quality. As it can be observed in this figure, the transmission
process is temporarily delayed and so is the compression one to prevent writing new data
to the shared memory before processing the existing one. After a while, both the connection
and the overall process are fully recovered, demonstrating the benefits of the proposed
methodology previously exposed in Section 4.1.

Remote Sens. 2021, 13, 850 19 of 23

Finally, all of the obtained results demonstrate that packing the compressed frames
reduces the communication overhead and accelerates the transmission process. It can also
be observed that using the data in uint12-bil format accelerates the compression process,
since less data are been transferred through the shared memory, demonstrating the benefits
of the developed kernels for allowing the compression process to be adapted to any input
data format.

In general, the results that were obtained for the Jetson Xavier NX demonstrate that
the proposed design can be used for real-time compressing and transmitting hyperspectral
images at most of the acquisition frame rates typically used in our flying missions and
using different configuration parameters for the compression. Additionally, it could be
potentially faster if a solid stage disk (SSD) memory were used instead of the SD card that
was used in the experiments. Regarding the Jetson Nano, a real-time performance was
hardly achieved in just the less restrictive scenarios.

(a) (b)

Figure 8. Graphical representation of the time in which each hyperspectral frame is captured, compressed and transmitted
for the experiments displayed in Table 7. (a) uint12-bil version. (b) uint16-bip version.

6. Discussion

The main goal of this work is to be able to transmit the hyperspectral data captured by
an UAV-based acquisition platform to a ground station in such a way that it can be analyzed
and/or visualized in real-time to take decisions on the flight. The experiments conducted
in Section 5.1 show the necessity of compressing the acquired hyperspectral data in order to
achieve a real-time transmission. Nevertheless, the achievement of a real-time compression
performance on-board this kind of platforms is not an easy task when considering the high
data rate that is produced by the hyperspectral sensors and the limited computational
resources available on-board. This fact has been experimentally tested in Section 5.2. While
considering this, the compression algorithm to be used must meet several requirements,
including a low computational cost, a high level of parallelism that allows for taking
advantage of the LPGPUs available on-board to speed up the compression process, being
able to guarantee high compression ratios, and integrate an error resilience nature to ensure
that the compressed data can be delivered as expected. These requirements are very similar
to those found in the space environment, where the acquired hyperspectral data must be
rapidly compressed on-board the satellite to save transmission bandwidth and storage
space, using limited computational resources and ensuring an error resilience behaviour.

The HyperLCA compressor has been selected in this work for carrying out the com-
pression of the acquired hyperspectral data, since this compressor was originally devel-
oped for the space environment and satisfies all the mentioned requirements [20,28]. This
compressor has been tested in previous works against those that were proposed by the

Remote Sens. 2021, 13, 850 20 of 23

Consultative Committee for Space Data Systems (CCSDS) in their Recomended Standards (Blue
Books) [25]. Concretely, in [20], it was compared with the Karhunen–Loeve transform-based
approach described in the CCSDS 122.1-B-1 standard (Spectral Preprocessing Transform for
Multispectral and Hyperspectral Image Compression) [30] as the best spectral transform
for decorrelating hyperspectral data in terms of accuracy. The results shown in [20] indicate
that the HyperLCA transform is able to achieve a similar decorrelation performance, but at
a much lower computational cost and introducing extra advantages, such as higher levels
of parallelism and an error resilience behavior. In [20], the HyperLCA compressor was
also tested against the lossless prediction-based approach that was proposed in the CCSDS
123.0-B-1 standard (Lossless Multispectral and Hyperspectral Image Compression) [31].
As expected, the compression ratios that can be achieved by a lossless approach are very
far from those that are required by the application targeted in this work. The CCSDS has
recently published a new version of this prediction-based algorithm, making it able to
behave not only as a lossless solution, but also as a near-lossless one to achieve higher
compression ratios. This new solution has been published under the CCSDS 123.0-B-2
standard (Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression) [32] and it represents a very interesting alternative to be considered
in future works.

On the other hand, although presenting a new methodology to transmit hyperspectral
information from a UAV to a ground station in real-time is the main goal of this research
work, the ulterior hyperspectral imaging applications have been always taken into account
during the development process. This means that, while it is necessary to carry out lossy-
compression to meet the compression ratios that are imposed by the acquisition data rates
and transmission bandwidth, the quality of the hyperspectral data received in the ground
station has to be good enough to preserve the desired performance in the targeted appli-
cations. As previously described in this work, the HyperLCA compressor was developed
following an unmixing-like strategy in which the most different pixels present in each image
block are perfectly preserved through the compression-decompression process. This is
traduced in the fact that most of the information that is lost in the compression process
corresponds to the image noise, while the relevant information is preserved, as demon-
strated in [20,29]. In [20], the impact of the compression-decompression process within the
HyperLCA algorithm was tested when using the decompressed images for hyperspectral
linear unmixing, classification, and anomaly detection, demonstrating that the use of this
compressor does not negatively affect the obtained results. This specific study was carried
out while using well known hyperspectral datasets and algorithms, such as the Pavia Uni-
versity data set coupled with the Support Vector Machine (SVM) classifier, or the Rochester
Institute of Technology (RIT) and the World Trade Center (WTC) images coupled with the
Orthogonal Subspace Projection Reed-Xiaoli (OSPRX) anomaly detector. The work presented
in [29] carries out a similar study, just for anomaly detection, but using the hyperspectral
data that were collected by the acquisition platform used in this work and with the exact
same configurations, both in the acquisition stage and compression stage. Concretely, the
data used in this work, as described in Section 4.2, are a reduced subset of the hyperspectral
data used in [29].

Finally, all of this work has been developed while assuming that a Wireless Local
Area Network (WLAN), based on the 802.11 standard, will be available during the flight,
and that both the on-board computer and ground station will be connected to it to use
it as data downlink. Further research works are needed to increase the availability and
range of this kind of networks or to be able to integrate the proposed solution with
another wireless transmission technologies to make it available to a wider range of remote
sensing applications.

7. Conclusions

In this paper, a design for the compression and transmission of hyperspectral data
acquired from an UAV to a ground station has been proposed so that it can be analysed

Remote Sens. 2021, 13, 850 21 of 23

and/or visualized by an operator in real-time. This opens the possibility of taking advan-
tage of the spectral information collected by the hyperspectral sensors for supervised or
semi-supervised applications, such as defense, survilliance, or search and rescue missions.

The proposed design assumes that a WLAN will be available during the flight, and
that both the on-board computer and the ground station will be connected to it to use it
as data downlink. This design can work with different input data formats, which allows
for using it with most of the hyperspectral sensors present in the market. Additionally,
it preserves the original hyperspectral data in a non-volatile memory, producing two
additional advantages. On one side, if the connection is lost for a while during the mission,
the information is not lost, and the process will go on once the connection is recovered,
guaranteeing that all of the acquired data are transmitted to the ground station. On the
other side, once the mission finishes and the drone lands, the real hyperspectral data
can be extracted from the non-volatile memory without compression if a more detailed
analysis is required.

The entire design has been tested using two different boards from NVIDIA that
integrate LPGPUs, the Jetson Xavier NX, and the Jetson Nano. The LPGPU has been used
for accelerating the compression process, which is required for decreasing the reduction
of the data volume for its transmission. The compression has been carried out using the
HyperLCA algorithm, which permits achieving high compression ratios with a relatively
high rate-distortion relation and at a reduced computational cost.

Multiple experiments have been executed to test the performance of all the stages
that build up the proposed design for both the Jetson Xavier NX and Jetson Nano boards.
The results obtained for the Jetson Xavier NX demonstrate that the proposed design
can be used for real-time compressing and transmitting hyperspectral images at most
of the acquisition frame rates typically used in our flying missions and using different
configuration parameters for the compression. Additionally, it could be potentially faster if
a solid stage disk (SSD) memory was used instead of the SD card that was used in these
experiments. On the other hand, when using the Jetson Nano, a real-time performance was
achieved in just the less restrictive scenarios.

Future research lines may include the optimization of the proposed design for reducing
its computational burden, so that it can achieve a more efficient performance, especially
when using boards with more limitations in terms of computational resources as an on-
board computer.

Author Contributions: R.G. proposed the design for the real-time compression and transmission of
the hyperspectral data. J.M.M. programmed the necessary GPU code, aided by M.D. who created
the simulation platform. J.F.L. acquired the hyperspectral image from an UAV; S.L. conceived and
designed the simulations; A.M. and A.J. performed the simulations; P.H. supervised the technical
work and paper reviews. All authors contributed to the interpretation of the results and the writing
of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by the Ministry of Economy and Competitiveness (MINECO)
of the Spanish Government (PLATINO projecto, no. TEC2017-86722-C4-1 R), the European Comission
and the European Regional Development Fund (FEDER) under project APOGEO (grant number
MAC/1.1.b/226) and the Agencia Canaria de Investigación, Innovación y Sociedad de la Información
(ACIISI) of the Conserjería de Economía, Industria, Comercio y Conocimiento of the Gobierno
de Canarias, jointly with the European Social Fund (FSE) (POC2014-2020, Eje 3 Tema Prioritario
74 (85%)).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2021, 13, 850 22 of 23

References
1. Ro, K.; Oh, J.S.; Dong, L. Lessons learned: Application of small uav for urban highway traffic monitoring. In Proceedings of the

45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; p. 596.
2. Chen, Y.M.; Dong, L.; Oh, J.S. Real-time video relay for uav traffic surveillance systems through available communication networks.

In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 11–15 March 2007;
pp. 2608–2612.

3. Qu, Y.; Jiang, L.; Guo, X. Moving vehicle detection with convolutional networks in UAV videos. In Proceedings of the 2016 2nd
International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, China, 28–30 April 2016; pp. 225–229.

4. Zhou, H.; Kong, H.; Wei, L.; Creighton, D.; Nahavandi, S. Efficient road detection and tracking for unmanned aerial vehicle. IEEE
Trans. Intell. Transp. Syst. 2014, 16, 297–309. [CrossRef]

5. Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for search and rescue operations in mountain avalanche
events. Geomat. Nat. Hazards Risk 2017, 8, 18–33. [CrossRef]

6. Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner,
B. An autonomous multi-UAV system for search and rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use, Florence, Italy, 18 May 2015; pp. 33–38.

7. Doherty, P.; Rudol, P. A UAV search and rescue scenario with human body detection and geolocalization. In Proceedings of the
Australasian Joint Conference on Artificial Intelligence, Gold Coast, Australia, 2–6 December 2007; pp. 1–13.

8. Li, Z.; Liu, Y.; Hayward, R.; Zhang, J.; Cai, J. Knowledge-based power line detection for UAV surveillance and inspection
systems. In Proceedings of the 2008 23rd International Conference Image and Vision Computing New Zealand, Christchurch,
New Zealand, 26–28 November 2008; pp. 1–6.

9. Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV surveillance in complex urban environments. In Proceedings
of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy,
15–18 September 2009; Volume 2, pp. 82–85.

10. Horstrand, P.; Guerra, R.; Rodríguez, A.; Díaz, M.; López, S.; López, J.F. A UAV platform based on a hyperspectral sensor for
image capturing and on-board processing. IEEE Access 2019, 7, 66919–66938. [CrossRef]

11. Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.; Martín, P. Estimating leaf
carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV).
Agric. For. Meteorol. 2013, 171, 281–294. [CrossRef]

12. Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A novel methodology for improving plant pest surveillance in
vineyards and crops using UAV-based hyperspectral and spatial data. Sensors 2018, 18, 260. [CrossRef] [PubMed]

13. Mitchell, J.J.; Glenn, N.F.; Anderson, M.O.; Hruska, R.C.; Halford, A.; Baun, C.; Nydegger, N. Unmanned aerial vehicle (UAV)
hyperspectral remote sensing for dryland vegetation monitoring. In Proceedings of the 2012 4th Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, 4–7 June 2012; pp. 1–10.

14. Valentino, R.; Jung, W.S.; Ko, Y.B. A design and simulation of the opportunistic computation offloading with learning-based
prediction for unmanned aerial vehicle (uav) clustering networks. Sensors 2018, 18, 3751. [CrossRef] [PubMed]

15. Freitas, S.; Silva, H.; Almeida, J.; Silva, E. Hyperspectral imaging for real-time unmanned aerial vehicle maritime target detection.
J. Intell. Robot. Syst. 2018, 90, 551–570. [CrossRef]

16. Specim, Specim FX Series Hyperspectral Cameras. Available online: http://www.specim.fi/fx/ (accessed on 4 May 2019).
17. DJI, MATRICE 600 PRO. Available online: https://www.dji.com/bg/matrice600 (accessed on 4 May 2019).
18. NVIDIA, Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

(accessed on 4 May 2019).
19. NVIDIA, Jetson Xavier NX. Available online: https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/

jetson-xavier-nx/ (accessed on 4 May 2019).
20. Guerra, R.; Barrios, Y.; Díaz, M.; Santos, L.; López, S.; Sarmiento, R. A new algorithm for the on-board compression of hyperspectral

images. Remote Sens. 2018, 10, 428. [CrossRef]
21. Díaz, M.; Guerra, R.; Horstrand, P.; Martel, E.; López, S.; López, J.F.; Sarmiento, R. Real-time hyperspectral image compression

onto embedded GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2792–2809. [CrossRef]
22. Díaz, M.; Guerra, R.; López, S.; Sarmiento, R. An Algorithm for an Accurate Detection of Anomalies in Hyperspectral Images

With a Low Computational Complexity. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1159–1176. [CrossRef]
23. Guerra, R.; Santos, L.; López, S.; Sarmiento, R. A new fast algorithm for linearly unmixing hyperspectral images. IEEE Trans.

Geosci. Remote Sens. 2015, 53, 6752–6765. [CrossRef]
24. Guerra, R.; López, S.; Sarmiento, R. A computationally efficient algorithm for fusing multispectral and hyperspectral images.

IEEE Trans. Geosci. Remote Sens. 2016, 54, 5712–5728. [CrossRef]
25. Consultative Committee for Space Data Systems (CCSDS), Blue Books: Recommended Standards. Available online: https://public.

ccsds.org/Publications/BlueBooks.aspx (accessed on 16 January 2021).
26. Howard, P.G.; Vitter, J.S. Fast and efficient lossless image compression. In Proceedings of the Data Compression Conference, 1993.

DCC’93, Snowbird, UT, USA, 30 March–2 April 1993; pp. 351–360.
27. TP-LINK, TP-LINK-TL-WN722N. Available online: https://www.tp-link.com/es/home-networking/adapter/tl-wn722n/

#overview (accessed on 12 November 2020).

http://doi.org/10.1109/TITS.2014.2331353
http://dx.doi.org/10.1080/19475705.2016.1238852
http://dx.doi.org/10.1109/ACCESS.2019.2913957
http://dx.doi.org/10.1016/j.agrformet.2012.12.013
http://dx.doi.org/10.3390/s18010260
http://www.ncbi.nlm.nih.gov/pubmed/29342101
http://dx.doi.org/10.3390/s18113751
http://www.ncbi.nlm.nih.gov/pubmed/30400252
http://dx.doi.org/10.1007/s10846-017-0689-0
http://www.specim.fi/fx/
 https://www.dji.com/bg/matrice600
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-xavier-nx/
http://dx.doi.org/10.3390/rs10030428
http://dx.doi.org/10.1109/JSTARS.2019.2917088
http://dx.doi.org/10.1109/TGRS.2017.2761019
http://dx.doi.org/10.1109/TGRS.2015.2447573
http://dx.doi.org/10.1109/TGRS.2016.2570433
https://public.ccsds.org/Publications/BlueBooks.aspx
https://public.ccsds.org/Publications/BlueBooks.aspx
https://www.tp-link.com/es/home-networking/adapter/tl-wn722n/#overview
https://www.tp-link.com/es/home-networking/adapter/tl-wn722n/#overview

Remote Sens. 2021, 13, 850 23 of 23

28. Guerra, R.; Barrios, Y.; Díaz, M.; Baez, A.; López, S.; Sarmiento, R. A hardware-friendly hyperspectral lossy compressor for
next-generation space-grade field programmable gate arrays. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4813–4828.
[CrossRef]

29. Díaz, M.; Guerra, R.; Horstrand, P.; López, S.; López, J.F.; Sarmiento, R. Towards the Concurrent Execution of Multiple
Hyperspectral Imaging Applications by Means of Computationally Simple Operations. Remote Sens. 2020, 12, 1343. [CrossRef]

30. Consultative Committee for Space Data Systems (CCSDS), Blue Books: Recommended Standards. Spectral Preprocessing
Transform for Multispectral and Hyperspectral Image Compression. Available online: https://public.ccsds.org/Pubs/122x1b1
.pdf (accessed on 17 February 2021).

31. Consultative Committee for Space Data Systems (CCSDS), Blue Books: Recommended Standards. Lossless Multispectral and
Hyperspectral Image Compression. Available online: https://public.ccsds.org/Pubs/123x0b1ec1s.pdf (accessed on 17 February 2021).

32. Consultative Committee for Space Data Systems (CCSDS), Blue Books: Recommended Standards. Low-Complexity Lossless and
Near-Lossless Multispectral and Hyperspectral Image Compression. Available online: https://public.ccsds.org/Pubs/123x0b2c2
.pdf (accessed on 17 February 2021).

http://dx.doi.org/10.1109/JSTARS.2019.2919791
http://dx.doi.org/10.3390/rs12081343
https://public.ccsds.org/Pubs/122x1b1.pdf
https://public.ccsds.org/Pubs/122x1b1.pdf
https://public.ccsds.org/Pubs/123x0b1ec1s.pdf
https://public.ccsds.org/Pubs/123x0b2c2.pdf
https://public.ccsds.org/Pubs/123x0b2c2.pdf

	Introduction
	Description of the HyperLCA Algorithm
	HyperLCA Input Parameters
	HyperLCA Initialization
	HyperLCA Transform
	HyperLCA Preprocessing
	Scaling V Vectors
	Error Mapping

	HyperLCA Entropy Coding and Bitstream Generation

	On-Board Computers
	Materials and Methods
	Proposed Methodology
	Use of Non Volatile Memory
	Flexible Input Data Format
	Packing Coded Frames

	Data Set Used in the Experiments

	Results
	Maximum Transmission Speed without Compression
	Maximum Compression Speed without Gpu Implementation
	Proposed Design Evaluation

	Discussion
	Conclusions
	References

