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Abstract— Parkinson’s disease is manifested as well in 
handwriting as in voice. Previous researches have carried out 
different procedures to estimate the dysfunctions of the illness in 
voice and handwriting separately. This paper proposes one 
parameter to evaluate the influence of the illness on both voice 
and handwriting as the symptoms affecting both has a common 
origin. Specifically, the parameter proposed is based on the 
Kinematic Theory of rapid human movements. It allows to 
quantify the deficits caused by Parkinson’s disease in both 
handwriting and voice. The velocity profile obtained to 
characterize voice between the first and second formant is 
computed by a spatio-temporal approximation. In handwriting, 
the velocity profile is obtained from the sampled positions of the 
pen on a digital tablet. Once the velocity profile is derived, it is 
transformed to fit into the lognormal model in which similarities 
between voice and handwriting has been found for performance 
of these tasks by Parkinson’s patients. The experiments with 
different databases of voice and handwriting recorded from 
different patients in different labs display encouraging results. 

Keywords—Sigma-lognormal model; kinematic theory of rapid 
movements; articulation; Parkinson; Voice;  handwriting. 

I. INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disease 
that has symptoms which manifest in deficiencies affecting 
both handwriting and voice. PD symptoms are the result of a 
dopaminergic deficiency characterized by the presence of two 
or more cardinal motor symptoms (i.e., bradykinesia, rest 
tremor, rigidity, and postural disturbances) [1]. PD is a slow 
progressive disease with a long duration where clinical 
treatment and rehabilitation can help to improve the quality of 
life. Therefore, an early diagnosis and continuous monitoring 
of the effects of treatments are important. PD has been 
monitored by recording handwriting and processing its signals 
and recording the voice and processing its signals. 

In handwriting changes of the kinematic aspects of 

movements and the analysis of in-air movements have been 
proposed as useful methodologies to monitor and diagnose 
early the disease. [2]–[5] 

On the other hand, in voice processing there have been 
recent studies about the evaluation of the voice of individuals 
with Parkinson’s disease using the variability of the pitch, the 
voice rate and pausing [6]–[9] .  

In the current paper, we propose using a common 
methodology to analyse handwriting and voice. As both voice 
and handwriting are complex tasks involving the neurological 
and muscular system, in which muscular system is 
synchronized to communicate an idea through sentences, 
words, and letters. When a person writes on a Wacom or other 
tablet device that allows capturing the temporal position of the 
pen during handwriting, the velocity information can be 
obtained and analysed. To this end, the Kinematic Theory of 
rapid human movements [10] is applied to divide a complex 
movement in simple movements (strokes), each one is 
modelled by a sigma-lognormal function and the complex 
movement is then the summation of all the parametrized 
sigma-lognormals. This theory has been applied in different 
fields to assess movements as it pertains to handwriting 
variations across time [11], [12]. Thus this model has allowed 
us to specify diagnostic systems for neuromuscular disorders 
[13], [14] and the assessment of risk factors for stroke risk 
[15]. 

In voice production, the resonating cavities modifiable by 
the articulatory organs allow the energy of the voice signal to 
be concentrated at certain frequencies (formants), due to 
oropharyngeal tract resonators. It is well known that the 
formants are related with the tongue-yaw reference centre 
(JTRC) [16]. Also, the JTRC is related with the first and 
second formant [17]. In recently studies [18]–[20], a 
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relationship between the formants and the lognormal model 
have been shown.  

The present work is intended to compare voice and 
handwriting production and the derived velocity signals as 
both tasks can be captured by a common parameter which can 
be validated to detect Parkinson disease. This validation of a 
common parameter in both domains reinforces earlier findings 
that could assist to develop a more reliable diagnoses. 

II. FROM VOICE OR HANDWRITING TO VELOCITY 

In order to get the kinematic signal from the voice, formants 
are calculated. The formant estimation is obtained by adaptive 
inverse filtering [21]. This computation has been carried out 
with a resolution of 15 Hz using an 8-order prediction-error 
lattice-ladder filter [22]. 

The first formant 1ܨ  is related to the longitudinal 
movement and the second formant 2ܨ is related to the vertical 
movement. These movements can be correlated with the 
formants positions in the plane 1ܨ vs [16] 2ܨ as: 
 

	 	
ݔ∆
൨ݕ∆ ൌ ቂ

ܿଵଵ ܿଵଶ
ܿଶଵ ܿଶଶ

ቃ ቂ∆1ܨ
2ܨ∆

ቃ								 (1) 

where ∆ݔ  and ∆ݕ  are the relative displacement from the 
previous position of the JTRC. 	ܿ  are the weights of the 
combination matrix. 

Once the displacement is calculated, the velocity signal 
 :ሻ is estimated asݐԦሺݒ

 ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݐ௩పሺݒ ൌ
ඥ∆௫ሺ௧ሻమା∆௬ሺ௧ሻమ

∆௧
 

In the case of handwriting, the patient is asked for write 
down on a tablet, in our case a WACOM tablet which record 
the position ݔሺݐሻ and ݕሺݐሻ of the pen on the tablet 200 times 
per second. As a result, the pen velocity can be worked out as: 

 ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറݐௗ௪ሺݒ ൌ ඥሺݔሺݐሻ െ ݐሺݔ െ 1ሻሻଶ  ሺݕሺݐሻ െ ݐሺݕ െ 1ሻሻଶ 

Both voice signals are normalized to mm/s. 

III. FROM VELOCITY TO SIGMA-LOGNORMAL MODEL 

This section is devoted to parametrize the velocity profile of 
both voice and handwriting signal using the Kinematic Theory 
of rapid movements framework. In this way, the velocity 
profile ̅ݒሺݐሻ  can be modeled as a linear combination of 
lognormals [23] as follows: 

ሻݐሺݒ̅ ൌ ∑ ;ݐሺݒ̅
ெ
ୀଵ ,ܦ ߬୨, ,୨ߤ ୨ߪ

ଶሻ  

where the velocity profile of each stroke ݒሺݐሻ is defined as: 

;ݐറ൫ݒ ߬, ,୨ߤ ୨ߪ
ଶ൯ ൌ

ሬሬറೕ
ఙೕ√ଶగሺ௧ିఛೕሻ

ݔ݁ ቊെ
ൣ൫௧ିఛೕ൯ିఓೕ൧

మ

ଶఙೕ
మ ቋ 

with ݐ the basis of time, ߬  the time of stroke occurrence, ܦ 
the amplitude of each stroke, µj the stroke time delay and ߪ 

the stroke response time, both on a logarithmic time scale .  

Based on the facts that Parkinson patients perform shorter 
movements and have some difficulties to plan next 
movements, among all of the expected effect of the disease on 
the lognormal decomposition is a lower stroke logresponse 
time ߪ  [4], [19]. Therefore, we propose as a common 
parameter to detect Parkinson disease in both voice and 
handwriting, the averaged the stroke logresponse time ∆σതതതത as 
defined in (6): 

 ∆σതതതത ൌ
∑ หσ݅െσሺ݅െ1ሻห
ܯ
݅ൌ1

ܯ
													 

It is expected that people with some degree of Parkinson 
disease will show a lower ∆σതതതത than healthy people. 

IV. METHOD 

A. Voice Database 

A database comprising phonations from five PD patients 
selected by neurologists and five control subjects was used in 
this study. The subjects, with aged from 52 to 78 years old, 
were diagnosed with PD as grade 2 or 3. Each subject was 
asked to utter the vowel /a/ at the same normal loudness and 
their most natural way (modal phonation). Each sample of the 
database comprises the recording of the vowel /a/ from the 
Spanish vowel set ([a] from the International Phonetic 
Alphabet) uttered in a sustained way, each utterance lasting 
approximately two seconds, separated by silences from 
repeated utterances. The voice records were taken by a hand 
recorder at 16 KHz and 16 bits, in the neurologists’ office. 
They were segmented automatically by an energy-based 
method and the central part of the phonation selected, 
avoiding the initial and final transients. 

B. Handwriting database 

A database comprising of seven individuals with 
Parkinson’s disease and seven age-matched controls were 
used in this study. All patients were tested on medication. All 
participants had written six loops which progressed to the 
right (i.e., cursive connected ‘llllll’) with an electronic pen. 
The participants were instructed to match the size of the 
cursive ‘l’s which were displayed before each trial. After each 
trial the performance of the participant was displayed between 
two lines which were 25 mm (i.e., 2.5 cm) apart, so the 
participant could see if s/he matched the required size. This 
condition was one of several size and speed conditions which 
were part of a much larger study. Each participant did repeat 
the writing task 8 times in which they tried to match the 25 
mm size requirement. 

The data were automatically segmented with a custom 
made segmentation procedure which searched for the first zero 
crossing in vertical velocity after the first full loop and 
thereafter searched for the first zero crossing in vertical 
velocity after the fourth full loop, i.e., each segment consisted 
of three loops per repetition (i.e., the connected second, third, 
and fourth loops of each trial). 
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C. Signal procesing. 

To process the voice production samples, first the central 
part of the signal was isolated to avoid the transients, where 
the speed is higher in Parkinson’s patients [20]. Second, the 
first and second formants were identified, after which the 
velocity was calculated as explained in section II. 

Once the velocity signal of the voice and the handwriting 
samples was obtained, the procedure to estimate the parameter 
was the same, i.e., ݒ௩ሺݐሻ and ݒௗ௪ሺݐሻ. The position 
signal data were fed into the sigma-lognomal estimator, where 
the signals were filtered with a cutoff frequency of 7 Hz. The 
lognormal parameters were calculated using the low-pass 
filtered signal as explained in section III. A new analytical 
signal was reconstructed from the estimated parameters as it is 
shown in Fig. 1 and Fig. 2. 

V. RESULTS 

A. Qualitatve comparison of Parkinson and normal voice and 
handwriting profiles 

As a first step, we compared the low-pass filtered velocity 
profile (original) with the analytical one. As can be observed 
in Fig. 1, the analytical and the original seem similar. The 
SNR is 21.7 dB in PD and 25.38 dB in control, being SNR the 
error between the original and its reconstructed signal gives 
the reconstruction quality in the sigma-lognormal domain 
[23]. 

 

If we compare the handwriting signal (Fig.1) with the voice 
signal (Fig.2), we can observe that they are similar but the 
time between peaks is longer in handwriting, i.e., 0.35 s in 
handwriting and 0.08 s in voice production. This could be due 
to try keeping the tongue position at a constant target to utter 
the vowel /a/. Instead, in handwriting, the movement is fast 
and longer, where simple movements are joined. The 

overlapping of two consecutives lognormals depends on the 
initial time of each lognomal and on the stroke logresponse 
time, therefore, the longer is the movement also the longer 
will be the stroke logresponse time, and there will be more 
overlapping between lognormals, as it is explained in[24].   

Comparing a control (Fig. 1 and Fig. 2 upper) with a PD 
(Fig. 1 and Fig. 2 down), one can observe how the velocity 
signal of the PD has more and shorter peaks and the variability 
of speed is also noticeable. When inspecting the voice signal it 
can be seen also that the speed is higher for the PD. This 
higher speed could be due to the disability of PDs to keep the 
tongue in the same position. 

 

B. Quantitative comparison of voice and handwriting 
averaged stroke response time ∆ߪതതതത. 

The average of the values obtained for ∆σതതതത for the voice data 
and handwriting data for healthy controls and PD patients 
across the two databases are given in Table I, Table II, Figure 
3 and figure 4. It can be clearly observed that the mean of the 
parameter	∆࣌തതതത is lower for handwriting and voice production of 
PDs. 

To evaluate whether a statistical difference exists between 
the ∆࣌തതതത value of controls and PDs an ANOVA (Analysis of 
Variance) was performed (using the statistical toolbox of 
Matlab). The two groups were considered different when the 
residual p-value is close to 0 and statistically similar if the p-
value is greater than 0.05 [25]. It was shown that the groups 
differed on their ∆࣌തതതത values in both handwriting and voice (p-
values were lower than 0.05). However, voice showed a larger 
difference than handwriting between the two groups, 
suggesting that voice production is more discriminative than 
handwriting. However, to verify this latter suggestion, this 
study should be repeated using voice and handwriting samples 
of the same participants. 

 
Figure 1.  Speed profile of the handwriting of a healthy (above) and PD 

patient (below). Original speed profile (continuous black line) and 
Lognormal reconstructed speed profile (discontinuous blue line)  

 
 

 
Figure 2.  Speed profile of the voice of a healthy (above) and PD patient 
(below). Original speed profile (continuous black line) and Lognormal 

reconstructed speed profile (discontinuous blue line)  
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VI. CONCLUSION 

The results seem to validate that it is possible to use a 
common parameter to assess voice production and 
handwriting. Furthermore, the current study shows that 
Parkinson’s disease affects the velocity profile of both 
handwriting and voice production. 

Comparing these handwriting and voice productions, it 
seems that voice production is better to distinguish PDs from 
controls. This pattern of findings, could be due smaller 
movements and less inertia when using the tongue as 
compared to hand movements made when writing. These 
characteristics could affect the width of the lognormal and the 
separation between them. 
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Figure 3.    Box-plot of the averaged stroke response time ∆σതതതത for Control 

and PD patients in voice.  

 
Figure 4.  Box-plot of the averaged stroke response time ∆σതതതത for Control 

and PD patients in handwriting.  

TABLE I. AVERAGE SIGMA: NORMAL VS. PARKINSON VOICES 
 Control PD  p-value 

 തതതത 0.2 0.08 0.005࣌∆

 
TABLE II. AVERAGE SIGMA: NORMAL VS. PARKINSON HANDWRITING 

 Control PD  p-value 
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