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Abstract: Anaerobic lagoons are natural wastewater treatment systems suitable for swine farms in
small communities due to its low operational and building costs, as well as for the environmental
sustainability that these technologies enable. The local weather is one of the factors which greatly
influences the efficiency of the organic matter degradation within anaerobic lagoons, since microbial
growth is closely related to temperature. In this manuscript, we propose a mathematical model which
involves the two-dimensional Stokes, advection–diffusion-reaction and heat transfer equations for an
unstirred fluid flow. Furthermore, the Anaerobic Digestion Model No1 (ADM1), developed by the
International Water Association (IWA), has been implemented in the model. The partial differential
equations resulting from the model, which involve a large number of state variables that change
according to the position and the time, are solved through the use of the Finite Element Method. The
results of the simulations indicated that the methodology is capable of predicting reasonably well the
steady-state of the concentrations for all processes that take place in the anaerobic digestion and for
each one of the variables considered; cells, organic matter, nutrients, etc. In view of the results, it can
be concluded that the model has significant potential for the design and the study of anaerobic cells’
behaviour within free flow systems.

Keywords: modelling; anaerobic digestion; ADM1; free flow reactors; finite elements analysis

1. Introduction

Anaerobic digestion (AD) is an eco-friendly biological process which is universally
used for the treatment of agricultural, industrial and municipal wastewater around the
world [1–4]. Its utilization is increasingly widely, due to its capacity for producing methane,
which can be used afterwards as a heat source or for electricity generation, taking part
within the low-carbon energy technologies and circular bio-economy [5]. In this context,
anaerobic lagoons (AL) are natural wastewater treatment systems with a long hydraulic
retention time, suitable for small communities due to the low energy demand and the
operating costs [6–9]. By applying this kind of technology, the mechanical equipment,
used for mixing processes in conventional plants, are avoidable. In addition, AL offer a
number of advantages, such as the establishment of concentration profiles along the reactor,
a buffering capacity in cases of overloads and greater protection against acidification [10].
However, due to the fact that AD is strongly influenced by temperature, there is a close
dependence between AL and weather conditions, so its implementation may be limited in
cold or low solar radiation areas [8,11].
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The application of mathematical models builds understanding for both microbial-
related dynamic and kinetic processes, reveals optimisation possibilities, which lastly
improves the digester’s performance [12,13]. The IWA Anaerobic Digestion Model No.1
(ADM1) [14], created in 2002 to stablish a common platform for the modelling of AD
processes [15], has been widely applied in waste treatment processes, due to its high
feasibility, considering the fact that most of the processes of AD are included within
ADM1 [16]. However this model has merely been applied to completely mixed reactors.
The approach of models based on the ADM1 for unstirred waste water treatment systems
has been little studied. In these models, complexity is increased and the effect of boundary
conditions is essential. Moreover, the mathematical complexity required by these models
does not entail a significant issue, due to the increasing technological and computational
development [12].

In the past twenty years many researches based on mathematical models for treatment
processes in lagoons have been carried out. Fleming [17] created the first models applying
computational fluid dynamic (CFD) for the prediction of the performance of full-scale
incompletely mixed anaerobic digesters. Wu and Chen [8] developed a CFD model for
AL which combines physical and biological processes, and includes both heat conduction
and solar radiation by a thermal model. In this model, a single-phase incompressible
Newtonian fluid is considered. Goodarzi, Sookhak Lari, and Mossaiby [18] determined the
effect of ambient and inlet temperature variations on the hydraulic performance of a typical
rectangular pond. In all these described models, the biological processes are depicted
by a single equation depending on the concentrations of the influent and effluent. Brito-
Espino, Ramos-Martín, Pérez-Báez, and Mendieta-Pino [19] defined advection, diffusion
and reaction phenomena for wastewater treatment in anaerobic plug flow reactors by
non-linear, second order, partial differential equations. ADM1 is implemented within this
model, and both biochemical and physical–chemical reactions of ADM1 are calculated
by a flowchart for sequential processes. In this method, temperature is not considered.
Nevertheless, very few researches have been conducted to develop a comprehensive model
which integrates fluid flow, heat transfer, and cells behaviour in AL.

The aim of this work is to set-up a theoretical framework for wastewater treatment in
unstirred flow anaerobic lagoons, by a model which allows the integration of fluid flow,
heat transfer and cells behaviour, for the purpose of describing processes occurring in AL.
The implementation of the ADM1 into the model and the consideration of the influence
of the local thermal weather, identified with the boundary conditions, allows the model
to portray the processes taking place in reality more precisely than [19]. In order to do
this, an improved two dimensional mathematical model, based on the coupling of a set of
parabolic partial differential equations (PDEs) and related to the phenomena associated to
AL, has been developed. In addition, Dirichlet, Neumann and Robin boundary conditions
have been established on the differential equations. This model combines the parametriza-
tion of different processes within the lagoon and its environment with the finite element
analysis. Finally, the parallelization of the resulting algorithm has been performed in the
simulation, therefore allowing an improved computational efficiency than the resulting
form sequential processes in [19]. Thanks to the help of FreeFemm++ and the parallel solver
package, available for this software, the processing of each one of the variables related to
AD processes and the simultaneous exchange of the data has been feasible. Having said
this, we conclude that the novelty of this study resides in the following aspects. Firstly,
in the implementation of the ADM1 and the heat transfer phenomenon in a mathematical
model which describes a unstirred fluid flow, in order to predict the spatial distribution of
the different variables that take part in the processes within the AL. Furthermore, secondly,
in the optimisation and designing of the algorithm, by parallel method, providing an
accurate forecast of the real behaviour of the process, as is shown in the ADM1. In the
simulation, two different scenarios have been chosen as examples; the first corresponds to
a conventional AL which is subjected to the ambient temperature, and the second includes



Water 2021, 13, 882 3 of 13

heat sources, induced by solar assisted [20] or through the biofuel recovery in the anaerobic
process [21,22].

2. Materials and Methods
2.1. Overview

Pollutant is removed in AL through combination of physical, biochemical and physical–
chemical phenomena. Advection, diffusion and heat transfer are the most common physical
processes in these systems (Figure 1). Both the organic matter and the suspended microor-
ganism within lagoons are subjected to the mechanical transport with the bulk flow of
the water (advection). At the same time, they tend to spread out and diffuse from higher
to lower concentration as time varies (diffusion). The energy transfer in the system, due
to a temperature gradient (heat transfer), is performed by conduction and convection
processes. Atmospheric factors associated with the borders of the model on the Earth‘s
surface include, beside the two previous, radiation process. Digestion process is carried
by anaerobic microorganism’s activity, bacteria an archaea, through a number of sequen-
tial and parallel reactions. The biochemical reactions consist of irreversible five-stage
processes; disintegration, hydrolysis, acidogenesis, acetogenesis and methanogenesis re-
actions. Physical–chemical reactions are those reversible processes where cells are not
involved. They are, firstly, the ion association/dissociation, and gas–liquid transfer [14].
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Figure 1. Scheme of the different phenomena that take places in AL and their environments.

Considering a system where the lagoon and its environment are included, different
zones can be identified (Figure 1). Depending on the local parameters—thermal conductiv-
ity, specific heat, density, and where biological processes take place—they are considered
different zones. Boundary conditions are located on the borders. Undisturbed ground
temperature TUGT is a ground thermal property situated at a depth where the ground
temperature is approximately invariable, depth value depends on climatic conditions and
is different in various regions of the Earth [23,24].

2.2. Governing Equations (Strong Formulations)

In this research, the mathematical model proposed is based on the two-dimensional
advection–diffusion-reaction, Stokes, and heat transfer equations. This is accompanied by
a series of boundary conditions. On the other hand, the IWA Anaerobic Digestion Model 1
(ADM1) has been implemented in the model.

The description of the model has been expressed in terms of primitive variables, mass,
velocity, pressure, and temperature. In these equations it has been assumed that velocity
and temperature field are in steady state conditions.
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2.2.1. Advection–Diffusion Reaction Equation

Advection–diffusion-reaction Equation (ADRE) as numerical solution, widely used
within mathematical modelling, to describe physical, biochemical and physical–chemical
processes in AL [19,25–27].

Governing equations and boundary conditions are summarized below.

∂φ

∂t
−D∆φ + ~u ∇φ + f (φ) = F(x, y) f or x, y ε Ω

φ(x, y, t) = gD(x, y) f or x, y ε ΓD ⊂ ∂Ω, t > 0

∂φ(x, y, t)
∂n

n(x, y) = gN(x, y) f or x, y ε ΓN ⊂ ∂Ω, t > 0

(1)

where (φ) is a scalar field that represent concentrations of both substrates and cells of each
of the biochemical reactions included in the anaerobic processes, ~u = (u1, u2) is given
by Equations (2), f (φ) is the source function, which is positive f (φ) > 0 for growth and
production or negative f (φ) < 0 for decay and consumption, biomass and metabolites,
respectively, ΓD and ΓN are Dirichlet and Neumann boundary conditions, respectively.
This term is developed in Equation (7) , F(x, y) is a generation function, which is zero (0)
in this case.

2.2.2. Stokes Equation

Stokes equation, together with the ADR has been used to describe the flow. It is
usually used for fluid with slowly motion and with high viscosity [28,29]. In this research,
a constant density and incompressible Newtonian fluid flow has been considered. Strong
formulation and Dirichlet ΓD and ΓN boundary conditions are as follow.

−ν∆~u +∇p = ~F f or x, y ε Ω

∇~u = 0 f or x, y ε Ω

~u = ~u0 f or x, y ε ΓD

∇~u · n + pn = g f or x, y ε ΓN

(2)

2.2.3. The Energy Equation—Temperature Distribution

The energy equation is based on the conservation of energy and the Fourier heat
conduction laws [30]. The internal energy balance equations, under a steady-state Eulerian
description can be expressed as a function of temperature [30,31]

ρ0Cv(~u ∇T)−∇(ki∇T) = 0 f or x, y ε Ω

T(x, y) = Taa(x, y) f or x, y ε ΓD

∂T(xi, t)
∂n

n(xi) = gN(xi) f or x, y ε ΓN

k
∂T
∂n

= h(Ta,ext − T) + εs · σ · (T4 − T4
sky) f or x, y ε ΓR

(3)

where ΓD corresponds to Dirichlet condition. It is applied to the UGT (Figure 1); ΓN is
the Neumann condition. It describes the value of the gradient of the dependent field
variable, normal to the boundary. Its calculation is based on Fourier Law; ΓR is the Robin
condition. It describes the Earth’s surface heating and cooling ΓR. This implied the use of
Stefan–Boltzmann’s law and Newtons’ law of cooling to model the heat exchange, related
to radiation and convection processes, respectively [32,33]. Stefan–Boltzmann constant
is σ = 5.68 · 10−8(W · K−4 ·m−2) [34]; Ta,exttemperature of the externally surrounding
surface; εs is the Earths’ surface emissivity, where 0 ≤ εs ≤ 1 ; Tsky is the sky radioactive
temperature. These are used to estimate the radiative heat exchange with the Earth’s
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atmosphere [35]. Tsky and εsky is used to estimate the radiative heat exchange with the
Earth’s atmosphere [35].

Tsky =

(
εsky · T4

a,ext

σ

) 1
4

− 273.15 (4)

εsky =

(
0.787 + 0.764ln

(Tdp

273

))
(1 + 0.0224N + 0.0035N2 + 2.8 · 10−4N3) (5)

such 0 ≤ εsky ≤ 1.
Here N are tenths cloud cover, and Tdp(K) is the dew-point temperature to which it

must be cooled to become saturated. It is obtained by a correlation found in [33] (6) and

Tdp = T −
(

100− RH
5

)
(6)

In this work, heat sources from biochemical reactions have not been considered.

2.2.4. Kinetic Equations

ADM1 is used for the description f (φ) (Equation (1)). Biochemical rate coefficients and
kinetic rate equations are represented in the Tables S1 and S2 within the Supplementary
Materials Section. First order kinetic was considered for the hydrolysis, acidogenesis,
acetogenesis and methanogenesis. The following equations based on common kinetic
expressions describe anaerobic treatment processes:

f (Si) = − ∂Si
∂t = −ρj

Xi
Yi ; f (Xi) =

∂Xi
∂t = ρjXi − KdXi ; ρj = µmaxi

Si
Ks1 + Si

· I1 · I2 · · · In (7)

f (Si) and f (Xi) are the changes in substrates and cells concentration over time. These
equations are based on the monod-type reaction kinetics [13,36]. In this model, it has been
considered free ammonia and pH inhibitions, in addition to the butyrate and valerate
competition [19].

The influence of temperature has been obtained by the Cardinal Temperature Model 1
(Appendix A) proposed by [37]

µmax = µopt
(T−Tmax)(T−Tmin)

2

(Topt−Tmin)[(Topt−Tmin)(T−Topt)−(Topt−Tmax)(Topt+Tmin−2T)] (8)

2.3. Solution Procedure

The finite element method, numerical technique based on the generation of a finite
element geometric model, is used for the solution of the partial differential equations
including in the problem.

In this methodology, the major steps include

1. The approach of the weak forms from the governing equations. The solutions are
assumed to belong to Hilbert space, considering this space as an infinite dimensional
function space with functions of specific properties that can be suitably managed in
the same way as ordinary vectors in a vector space. They are represented in Table 1.

2. Discretization of the domains, both physical with more or less regular triangulation
and related to time. In Figure 2, the discretization of the different sub-domains, nodes
and triangle, is showed.

3. Selection of the shape functions, essential to provide an approximation of the solution
within an element. These relate the coordinates of every point of a finite element with
the positions of its nodes,

4. Formulation of the system of equations.
5. Solving systems of equations. The free software FreeFem++ has been used to solve

them. It is a PDE solver with its own high-level programming language and accurate
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syntax for mathematical formulation. Freefem++ have high diversity of triangular
finite elements (linear and quadratic, Lagrangian elements, discontinuous P2, etc.) to
solve PDE in two (2D) and three (3D) dimensions.
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Figure 2. (left) geometric characteristics and boundary values; (right) dicretization of the domains.

Table 1. Scheme of the weak equations used in the model, where ~v, q, Yi, W are the smooth functions
and H1

0,P1
0,P2

0 are the Hilbert space.

Model Weak Equations Hilbert Spaces

Stokes µ
∫

Ω∇~u · ∇~v−
∫

Ω(div ~v)p =
∫

Ω
~f~v f or all ~v ε P2

0(τ
h)∫

Ω(div ~u)q = 0 f or all q ε P1
0(τ

h)

ADR
∫

Ω
∂φ
∂t ·Yi +D

∫
Ω∇φ · ∇Yi +

∫
Ω u∇φ ·

Yi +
∫

Ω f (φ) ·Yi = F(xi) ·Yi
f or all Yi ε H1

0(Ω)

Thermal

∫
Ω W[

− ∂
∂x,y (k

∂T
∂x,y −

∂
∂xj (k

∂T
∂xj )− qc(x, y, xj)

]
dxi

f or all T ε P2
0(τ

h)

2.4. Calculation

The partial differential equation solver FreeFem++ was used to implement the al-
gorithm for the calculation. Due to it advantages, open access software with a powerful
generated mesh and a large collection package to visualize approximate solutions, makes
Freefem++ an ideal tool to solve complex partial differential equations [38]. Parallel calcu-
lation by parallel computing on clusters of personal computer has been achievable with a
Message Passing Interface (MPI) within Freefem++.

3. Results and Discussion
3.1. Model’s Considerations

In order to solve the formulated problem, fitted for a specific case, it has been necessary
to stablish geometric conditions, physical properties, initial conditions and boundary
values. A summary of these characteristics is represented in Figure 2, Tables 2–4 and in the
Supplementary Materials Section.

The system has been divided in different domains and subdomains. Ω1, Ω2 and Ω3
are included within Ωg and refer to the immediate ground around of lagoon; whereas
Ω4, Ω5 and Ω6 in Ωr and concern the lagoon. AD occurs in Ω5 considering Ω4 and Ω6 as
transition zones (Figure 2).
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In this case, the proposed anaerobic lagoon is located in temperate zones and is
subjected to the environmental thermal conditions considering that there are no thermal
loads on the sides of the domains, so the ground heat flow is transmitted vertically.

Table 2. General parameters considered. Q represents hydraulic flow in the inlet and outlet pipe. Si and Xi represent
substrate and cell concentrations in the inlet pipe.

Thermal Constants Diffusion
Coefficient Boundary Values

cosΘ hint σ k1 k2 k3 D Q Si Xi
(W ·m−2) (W ·m−2 ·K−1) (W ·m−2 ·K−4) (m2 · d−1) m2 · d−1 (m3 · d−1) (mg (COD) · L−1)

0.29 10 5.67 · 10−8 2.3 3 0.02 8.64 · 10−3 0.5 28,000 110–150

Table 3. Kinetic parameters [6].

Kinetic
Parameters Sugar Fats Amino

Acids Propionate Butyrate LFCA Valerate Acetic Acid

µopt(d−1) 6.9 3.9 6.9 0.49 0.67 6.1 1.1 7.5
Kd(d

−1) 0.9 1 1 0.04 0.03 0.25 0.04 0.037
Ks(kg (COD)/m3) 0.5 0.8 3 1.145 0.176 0.8 0.5 0.037

3.2. Evaluation on Performance of Temperature

Figure 3 shows the temperature distribution in the proposed system under steady-
state conditions for some examples of wastewater treatment plants whose information is
included in Table 4. The lagoon contour has been illustrated in the first graphic. It is of
interest to observe how the thermal behaviour within the lagoon depends on the boundary
conditions, but also the hydraulic flow that is subject to the boundary values in the inlet
and outlet pipe.
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Table 4. Specific weather parameters considered from four wastewater treatment plants (WWTP). It is provided the
Universal Transverse Mercator (UTM) coordinates. Tam are the annual means temperatures and Tmm the monthly means. P1
and P3 are located in the coastal zones, while P2 and P4 are located in the mid-altitude zones.

WWTP UTM Coordinate wind (m · s−1) Tam
◦C Tmm RH (%) G Tdp ε Tsky

x y z (W/m2) (◦C) (◦C)

P1 430,371 3,108,919 11.60 6.6 22.7 19.0 64 290.53 11.8 0.822 5.00
P2 444,484 3,108,895 511 6.6 19.8 16.6 82 278.80 13.0 0.824 2.95
P3 428,778 3,084,390 271.81 5.3 22.2 19.3 66 299.39 12.5 0.823 5.41
P4 447,661 3,098,525 831.51 5.3 17.3 12.9 80 292.68 8.9 0.813 −1.53

3.3. Organic Matter Removal and Behaviour of the Microbial Community

Figure 4 represents the variation on concentrations, in steady state, happening in some
of the processes taking place within the lagoon. These simulations describe, in the case
of P1 (Table 4), the variation of sugar, propionate, acetic acid and their corresponding
bacterial biomass concentration, along of the pond’s length and depth, according to the
boundary conditions as shown in Table 2.
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Figure 4. Concentrations’ variation, together with the length and depth of the lagoon, for the example P1. (a–c) correspond
to substrates, (d–f) to microorganisms.

As shown in these simulations, concentrations decreased throughout the pond length
as a result of dispersion and biodegradation. The transition zones (Figure 2) have been
considered as low microbial activity, so the net growth of cells is observable from the x-axis
value equal to 2. As a result, propionate and acetic acid’s source are located in this zone
(Ω5). The cells’ growth is affected much more by the concentration of the substrates than
the temperature’s effects because temperature variations in this region differ very little
from one point to another.

With respect to acidogenesis and methanogenesis, cells effectiveness on substrates
removal is greater than in the acetogenesis due to the kinetic parameters. For the propionate
µmax and Ks are 0.49 (d−1) and 1.145 (mg(COD) ·m−3), respectively, (see Table 3). Thus,
cells growth value and, therefore, the substrate removal is lower than in the previous
two cases (see Equation (7)). The resulting value of substrate concentration in the outlet,
after the wastewater treatment process, is between 600 and 500 (mg(COD)/L). In the
case of acetic acid, this same concentration, next to the pond outlet, is smaller, due to the
accumulation of organic matter that has not been reached by the microbial community.

Figure 5 shows charts representing substrate and propionic acid bacteria’s concentra-
tions for P1 (Table 4) along the axis AA. Cases 1 and 2, with different concentrations of mi-
croorganisms in the inlet pipe of the lagoon, 110 (mg(COD)·L−1) and 115 (mg(COD)·L−1),
respectively, are compared. In both cases, the graphics share a similar trend, a downward
slope which, al last, connects at the middle point of the axis. There is no net growth within
the microbial population. The slope above mentioned is reduced, cells growth offsets the
diffusion process in Ω5 (Figure 2). Nevertheless, substrate removal in Case 2 is benefited by
the highest concentration of cells at the inlet pipe 150 (mg(COD)·L−1). The decrease in val-
ues from the last section, for both graphs, occurs as a result of the dispersion phenomenon
since microbial activity in Ω6 has not been considered.
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Figure 6 depicts, as in the previous example, the chart of propionate along the axis AA
as well as the distribution of temperature in the lagoon for three different examples. E-1;
The lagoon is subjected to ambient temperature (see case P4 in Table 4 and Figure 3). E-2;
It is included a bed heat source at the bottom of the lagoon, between 2 and 3 coordinates
of the x axis with a temperature of 35 ◦C. E-3; In this occasion, that same heat source is
located between coordinates 4 and 8 of the x axis.
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Figure 6. (a) Temperature distribution under three different scenarios; E-1 Ambient temperature, E-2 includes a heat source
at the bottom of the lagoon, between coordinates 2 and 4, and the E-3 between 4 and 8, in the x axis. (b,c) Concentration of
propionate and cells, respectively, along the axis AA (see Figure 5) for the different scenarios detailed in (a).

The distribution of temperature is showed in Figures 3 and 6. As expected, the removal
efficiency is improved by the rising temperature of the heat source, as is observed in the
cases 2 and 3. However, this graphic also shows that organic matter is eliminated more
efficiently in case 2 than in 3 in a percentage of 10 %. Consequently a minor residual
concentration in the outlet pipe is achieved.

Table 5 sums up the propionate removal information for the four examples above
mentioned. It shows the source and effluent concentrations, as well as the percentage
removed. Best values correspond with case 4.

Table 5. Values of propionate concentrations and the rate per 100 removed.

Case Source Effluent Removed Percentage
Si (mg(COD)/L) Si (mg(COD)/L) (mg(COD)/L) Removed

1 1500 280 1220 81.33%
2 1500 265 1235 82.33%
3 1700 215 1485 87.35%
4 1400 135 1265 90.35%
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By analysing the table, it can be said that the propionate concentration at the outlet of
the lagoon, once acetogenic bacteria have removed a great part of substrate in the system,
is among 280 and 135 mg·L−1. By placing a heat source, strategically, at the bottom of the
lagoon (E-2 and E-3) it is possible to reduce substrate concentrations at its outlet.

4. Conclusions

In this paper, we have proposed and assessed a methodology for anaerobic cells
performance for wastewater treatment, in AL, under the influence of the temperature.
It has been studied in terms of biomass and substrate concentrations. The model couples a
series of PDEs, related to the phenomena associated to AL (ADRE, ADM1, Stokes and heat
transfer), to each other.

Diffusion for horizontal and vertical directions, the movement of the bulk of the
concentrations in accordance with a gradient, external temperature interactions, biochem-
ical and physical–chemical reactions, and a set of boundary values were considered in
this study.

This model builds understanding for microbial community’s behaviour along the
lagoon as a function of the temperature. Applying heat load in different points of the
system, it has been possible to establish correlations through the graphics, as well as the
comparison between diverse scenarios according to their corresponding boundary values.
The results give us the possibility to obtain effective designs adapted to each circumstance,
avoiding energy loss.

This methodology allows the optimization of unstirred flow systems, taking into
account that the advantages of these systems make them more suitable for specific applica-
tions. The model can be used in the prediction of the effluent quality and in the design of
AL to achieve better performances.

In view of the results, it can be concluded that this methodology has significant
potential as a tool for both the design of AL, and the interactive learning of the microbial
ecology in plug flow systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ADM1 Anaerobic Digestion Model No1
IWA International Water Association
AD Anaerobic Digestion
AL Anaerobic Lagoons
FEM Finite element method
CFD Computational fluid dynamic
PDE Partial differential equation
ADRE Advection–diffusion-reaction equation

Nomenclature
The following nomenclature are used in this manuscript
∆ Laplace operator⇒ ∆ = ∂2

∂x2
i

∇ Gradient operator⇒ ∇ = ∂
∂xi

Ωr Reactor (lagoon) domain
Ωg Ground domain surrounding the lagoon
H1

0,P1
0,P2

0 Hilbert space
ΓD Dirichlet boundary condition
ΓN Neumann boundary condition
ΓR Robin boundary condition
~v, q, Yi, W Smooth functions
D Diffusive coefficient
µmaxi Maximum specific growth rate
~u Velocity vector
ν Viscosity
T Temperature
Ta,ext Temperature of the externally surrounding surface
Tmax Maximum growth-temperature
Tmin Minimum growth-temperature
Tdp Dew-point temperature
TUGT Undisturbed ground temperature
Topt Temperature for maximum specific growth
Tsky Sky radiative temperature
G Irradiance
RH Average relative humidity
σ Stefan-Boltzmann constant
ε Emissivity
hint Internal convective heat transfer coefficient
ki Heat conductivity for Ωi, where i = 1,2,3. ..
n Unit normal
Θ Angle between the beam direction and the normal to the surface
µopt Optimal value of the maximum specific growth rate
Ii Inhibition coefficient
Kd Specific microorganism decay rate
ρj Kinetic rate of process j
KS1 Substrate saturation constant
Si Substrate concentrations
Y1 Substrate yield coefficient
Xi Biomass concentration
φ Scalar field
p Pressure
ρ0 Density
Q Flow
t Time
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Appendix A

Table A1. Cardinal temperature and maximum specific growth rate at the optimal temperature for
representative cells of the different phases in the anaerobic digestion [10,39,40].

Process Tmin(◦C) Top(◦C ) Tmax(◦C) µopt(hr − 1)

Hydrolysis/acidogenesis 11 39.3 45.8 1.1
Acetogenesis 5.6 40.3 47.3 1.4

Methanogenesis 11.1 34.1 46.3 1.1
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