and, equating the coefficients of ε^{2} and ε^{3} to 0 , we obtain respectively $a=0$ and

$$
b+\frac{1}{24}+b-\frac{1}{48}=0 \quad \text { or } \quad b=-\frac{1}{96} .
$$

(We get the same values of a and b using the second arrangement of the equation.)

But the two respective approximations yield $x=\frac{1}{2} \varepsilon\left(+0 \varepsilon^{3}\right)$ and

$$
x=\frac{\sqrt{4+2 \varepsilon^{2}}-2}{\varepsilon}=\frac{\varepsilon}{2}-\frac{\varepsilon^{3}}{16}+\cdots,
$$

so they only agree as far as terms in ε^{2}. However, the terms in ε^{3} do align with the inequality established at the end of Example 2.
10.1017/mag.2021.29
© The Mathematical Association 2021
NICK LORD
Tonbridge School, Kent TN 9 1JP
e-mail: njl@tonbridge-school.org
$\sum_{n=2}^{\infty} \frac{1}{n H_{n-1}}$ diverges while $\sum_{n=2}^{\infty} \frac{1}{n H_{n}^{1+\varepsilon}}$ converges
The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is an example of a divergent series with positive terms where the general term tends to zero as n tends to infinty. For any integer number $n \geqslant 1$, the nth harmonic number H_{n}, is defined by $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then the terms of $\sum_{n=2}^{\infty} \frac{1}{n H_{n-1}}$ grow much more slowly than those of $\sum_{n=1}^{\infty} \frac{1}{n}$ since $\lim _{n \rightarrow \infty} \frac{\frac{1}{n H_{n-1}}}{\frac{1}{n}}=0$. However,

Theorem 1: $\sum_{n=2}^{\infty} \frac{1}{n H_{n-1}}$ is divergent.
Proof: Here we present in Figure 1 a visual proof of this fact, following [1].
Raising the second factor of each summand to the $1+\varepsilon$ power 'only slightly' shrinks the size of each summand, especially if ε is very small. But this modification is enough to transform divergence into convergence.

FIGURE 1
Theorem 2: Let $\varepsilon>0$. Then $\sum_{n=2}^{\infty} \frac{1}{n H_{n}^{1+\varepsilon}}$ converges.
Proof: The proof follows from considering Figure 2 below.

FIGURE 2
Remark: Each term of the series of Theorem 1 is a rational number. If ε is chosen to be a positive whole number, then this is also true for the series of Theorem 2.

Reference

1. J. Marshall Ash, Neither a Worst Convergent Series nor a Best Divergent Series Exists, The College Mathematics J. 28 (4) (1997) pp. 296-297.
10.1017/mag. 2021.30
J. MARSHALL ASH
© The Mathematical Association 2021
Department of Mathematics,
De Paul University, Chicago, IL 60614 USA
e-mail: mash@depaul.edu ÁNGEL PLAZA
Department of Mathematics, University of Las Palmas de Gran Canaria, Spain e-mail: angel.plaza@ulpgc.es
