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Abstract

The existence of Hopf bifurcations and slow-fast cycles in the dynam-
ics of & model for the interaction between phyto- and zooplankton is con-
sidered. A sensible and easily interpretable dimensionless version of the
model is presented, followed by a numerical bifurcation analysis in a two-
dimensional parameter space. The biological meaning of the parameters
and qualitative features in phase space are stressed.
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1 Introduction

In the open sea, plankton populations live in an ever-changing environment
where equilibrium situations are the exception rather than the rule. Quite
often, sudden and dramatic variations in biomass happen due to the internal
mechanisms that rule the behaviour of the planktonic components.

Therefore, it is natural to look for models of plankton dynamics able to
account for the omset of osciliations of various classes; among them, the slow-
fast dynamics related to excitable variables is frequently observed in natural
environments. There is no need of formulating complicated models: Even fairly
easy ones can account for very rich dynamics.

In this paper, as in Truscott (1995), plankton is divided into only two classes,
phytoplankton and zooplankton, and they stand in a prey-predator relation-
ship. See also Steele and Henderson (1992). p(t) and z(¢) shall represent the
spatially averaged phyto- and zooplankton biomasses, repectively. Both classes
are related to each other through grazing, by which biomass is transferred from
phytoplankton to zooplankton. In the absence of grazing, the time evolution
of phytoplankton is modeled by a logistic law with growth rate r and carrying

capacity k:

3

p'=rp(l~ %)~

Grazing is introduced as a Holling III interaction term:
2
r__.
Rfmaxz a2 + p27
this means that for large p the consumption rate of phytoplankton per unit of

grazer biomass tends to a saturation value E... o is the so-called semisat-
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uration constant, which is a measure of how fast the grazing term becomes
asymptotically constant: The closer a is to 0, the faster is Ry« approached.
On the other hand, the dynamics of z is a linear one in the absence of phyto-
plankton: z’/ = —uz, and the positive grazing effect is obtained by adding the
grazing term in the p dynamics times some effectivity coefficient v, a parameter
that can embody the delay effect of the biomass transfer from phytoplankton

into zooplankton. The above considerations are summed up in the ODE model:

P = (1 ~ ) - ol
Z=—pz+ 'yRmaxz—pi——.
a? + p?

The aims of this paper are:

a) To present a different dimensionless version of the ODE mode! where
parameters are easily interpreted from a biological viewpoint.

b) To develop a bifurcation analysis leading to the understanding of the
plankton dynamics through Hopf bifurcations and then to slow-fast cycles. Hopf
bifurcations are one of the most employed tools in describing the onset of oscil-
lations in many systems, ranging from mechanical to biological to social ones.

See Ferndndez and Pacheco (2001); Pacheco et al. (1997).

¢) To obtain further insight of the biological interpretations of the model.

2 Qualitative analysis of the model

2.1 Adimensionalization

Obtaining dimensionless forms for the equations is a primary task before em-

barking on further analyses in any model study. As a rule, equations can be
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written in simpler forms, the number of parameters is reduced, and the remain-
ing ones are found to be easily interpretable combinations of the original ones.
The procedure is not unique and usually units must be carefully chosen. A
most interesting discussion can be found in Fowler (1997), the standard tech-
nique is explained in Edelstein-Keshet (1988), and many interesting examples
are described in Murray {1989).

In this case a nice dimensionless version of the model can be obtained by

scaling the variables

t=t"%, p=p'p, 2=2"%

with the new units:

r

Rmex

=

k.

,ﬁ:k,'z’:

EEE

This choice is different from the one proposed in Truscott (1995), and amounts
to using the linear relaxation time and the carrying capacity of phytoplankton

as new time and phytoplankton biomass units. The zooplankton biomass unit is

r

simply the fixed fraction of k given by the dimensionless quotient relating

axX

the linear growth rate of phytoplankton and the maximum consumption rate

per unit grazer. By plugging these values into the equations and dropping the

asterisks of the new variables, the model is written in the simapler form:
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e . . :
where v = I expresses the semisaturation constant ¢ as a fraction of the carry-

ing capacity k, 6 = —T/f is the quotient of the linear growth rates of both species,

and = R':“ « is the analogue of v —note that the factor is the inverse fraction
of the one used to define the zooplankton unit. Actually, 3 plays no role in the
analyses to follow; instead, the dimensionless combination w = -g is introduced
for the sake of simplicity, notational convenience, and interpretability. It is
inferesting to pbserve that w measures how large the linear decay rate u of zoo-
plankton is with respect to the maximum rate yRyax of zooplankton biomass

creation out of phytoplankton. This remark will often be used in the sequel.

2.2 Singular points and their stability

For any initial condition (po, zp) in the first orthant of the phase plane, the
corresponding orbit never leaves it, for it follows from the model construction
that both the p-axis and the z-axis are trajectories of the system. The analysis

is therefore restricted to this area.

The manifold z’ = 0 is the union of the p-axis and the line

P=UT=w

while the p’ = 0 manifold is formed by the z-axis and the curve, asymptatic to

the z-axis when p — 0, defined by the equation

L 1-P02+p?)
= P

The above equations show immediately that two conditions must be fulfilled

for the system to have a singular point interior to the first orthant:

125
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w<l1 andp<1

the other only two singular points being (0,0) and (1,0} for any choice of the

parameter values. Note also the equivalence

/1
p<lEe=my <yf~~1L
w

It is straightforward to show that (0,0) is a saddle point whose stable and
unstable manifolds are the z-axis and the p-axis respectively . The point (1,0)
is also a saddle point with the p-axis as stable manifold —stated simply, this
mesns that the restricted dynamics is given by a logistic~, while the unstable
manifold is locally given by the curve z = (1 — p)(* + p*)/p.

Once the two conditions w < 1 and p < 1 are met, the singular point

b 7o) = 1o, 2 [ 5]

in the interior of the first orthant is the unique intersection point of the curves

(Figure 1):
p=v l—w
LU=t
P

The relationship between v and w governs the stability of this singular point, and
in case there should exist an stability shift for some pair(s) (w, v}, a bifurcation

problemn must be considered. This is the aim of the next section.

2.3 A bifurcation analysis
2.3.1 The shape of the p’ = 0 manifold

From a geometric viewpoint the stability of the singular point depends on the

shape of the curved component of the p' = 0 manifold, the curve

126
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_Q-p2+7p°)
. :

z

2, .2
Its slope — z ;p +2(1 — p) depends (Figure 2) on the parameter v. For large

v the slope is always negative and the curve descends monotonically from +oc
to 0 along the interval (0,1]. This is easily proved: Writing

V2 4 p?

P2

+2(1~p)=1-2 —§<0

2

in the form 2p+? > 1, it follows trivially that it suffices to take v large enough

for the inequality to hold. To quantify how large v must be, consider that the
2 V2

minimum m of the expression 2p + — occurs when p,,, satisfies 2 — 2— = 0,

P 7

2

or equivalently p,, = v?/3. Therefore m > 1 if 20%/3 + —1;—/5 =323 > 1, or
/1

V> Verit = '2—7 =(0.19245...

For v < verit, two extrema ~a minimum and a maximum-— appear at the
values Pin 80d Prax, With 0 < pmin < Pmax < 1. Therefore the slope of the
curve is positive in the interval (Pmiq, Pmax) , its graph shows a characteristic
hump form, and the linear stability analysis of the point (p*,2*) depends on

whether p* € (Pmin, Pmax) OF not. To see when this is the case, write:

Prain < P' =V < Pmax

1—w

to obtain the following estimates for w:

(=) < re(E) =

v 1—-w v
(pma.x)2 (pmi::)z
124 )4
ety D (W D e
2 . 2
v v

that must be satisfied (remember that v < veri) for the singular point (p*, z*)
to be in the “uphill” part of the hump, to the left of the maximum. When this is

the case, an annular closed region around the singular point can be determined
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in phase space such that any orbit entering it will remain there forever, so the
Poincaré-Bendixson theorem is applied and a limit cycle exists. See Arrowsmith

and Place (1994); Verhulst (1990).

2.3.2 Numerical analyses in the (w,v) plane

The model dynamics depends essentially on the two parameters w and v, and
the bifurcation analysis amounts to study those sets of pairs (w,v) for which
the qualitative aspect of the phase portrait is the same. In this model no simple
expressions for pmin and Pmax can be obtained for general v, so the following step

will be the numerical analysis of some geometrical shapes in the (w,v) plane.

Remember that the conditions for the existence of a singular point in the

/1
w<landv< y/——1
w

so the set of feasible pairs in the (w,v) plane is the open set  limited by the

first orthant amount to

positive w-axis, the positive v-axis and the graph of v = ,/% — 1 (Figure 3).
By establishing a grid over (2 and computing the eigenvalues A{w, v} of the
jacobian matrix at the grid points, the tramsition from two negative real eigen-
values to negative real part complex ones, and from these to positive real part
complex ones can be tracked across two parabola-like curves that can be de-
termined by fitting adequate trigonometric polynomials to the observed points.
This procedure can be easily programmed in Mathematica or Maple.
Therefore, ) is union of three open regions and the two parabola-like curves

separating them', T'y_g and I's_g. T'ny_s ruas from the origin to (1,0) with

'Here N means “node”, S, “spiral”, and H, “Hopf”.
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a single maximum at (0.4,0.8); I's_ g runs from (0.5,0) to (1,0) and its single
maximum is at (0.75,0.19). The three open regions are (Figure 4):

Qn, above I's_ g: For (w, v) in this region, (p*, z*) is a stable node (two neg-
ative real eigenvalues) whose attraction basin is the interior of the first orthant.

g, limited by both I'y.s, s g , and the w-axis: For {w, ) in this region,
{p*,2*) is a stable spiral point (negative real part of the complex eigenvalues)
and, again, the attraction basin is the interior of the first orthant. If (p*,2*) €
I'~n-s, it behaves as a degenerate node.

Qp, below [s_g: For (w,v) in this region, (p*,2*) is a unstable spiral
point surrounded by a stable limit cycle. Then, ['s_ g is the bifurcation set
of a transcritical Hopf bifurcation: When crossing it, the stable spiral point
(p*, z*) splits into an unstable spiral point and a stable limit cycle surrounding
it. The attraction basin is the interior of the first orthant as well. Numerical

computations show that the Hopf bifurcation condition (see Arrowsmith and

Place (1994))

1s also met.

3 Biological interpretation
To obtain a sensible explanation in biological terms of the above discussion the
definition and interpretation of the parameters w and v must be remembered:

B _a
YReax’ k

W ==

w| o
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w expresses the relationship between the linear decay rate p of zooplankton and
the maximum rate yRmax Of zooplankton biomass creation out of phytoplank-
ton. v indicates how fast the maximum grazing rate is approached: Actually,
it is a measure of how much phytoplankton is needed for grazers to reach a
satiated state. Small values indicate rapid satiation, while larger values are the
signal of a harder struggle for existence.

Given that for the existence of (p®,2z*) it is required that w < 1, ze.
4 < YRmax, small values of w mean that the nonlinear “birth” rate Y Rmax
is much larger than the linear decay rate p. Therefore, if v is small, i.e. the
maximum grazing rate Ruyay i rapidly approached, the net balance is positive
for zooplankton growth. It must be noted that for large v the interval of feasible
w values becomes small quite rapidly: For instance, when v = 1 the interval is
{0,1/2). Should any w > 1/2 be chosen, the model dynamics shows that the
populations (p,z) — (1,0), that is, zooplankton disappears as phytoplankton
settles comfortably at its carrying capacity.

Summing up, the biology underlying the model is characterized by the con-
flict between “v, or how much phytoplankton is needed for grazers to reach a
satiated state” and “w, or how efficient is zooplankton in the transformation of
phytoplankton biomass into its own biomass”. This is reflected in the following,

purely qualitative table:

v\w small large

small | Stable populations Cyclic behaviour

large | Stable populations | Zooplankton extinction
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It must be observed that the analysis in 2.3.2 shows that stable populations
may be approached either directly (stable nodes) or after decaying oscillations

(stable spiral points).

4 Slow-fast cycles

Roughly speaking, a slow-fast cycle is a cycle along which the travelling speed
of one state variable is dramatically altered on some parts of the cycle, and this

variable is called a “fast” variable. The other state variable is the “slow” one.

The graph of the time evolution of the fast variable shows a typical oscillatory
pattern: A wave train of steep humps with more slowly decreasing lees (Figure
5).

Inspection of the relative position of the p’ = 0 and 2’ = 0 manifolds reveals
a slow-fast cycle situation ‘if one of them —the one corresponding to the fast
variable—is an S-shaped curve and the other one crosses it transversally through
some point in the central part of the S. This is exactly the case of the model for
(w,v) € Qy: To see it, just rotate the phase plane by an angle of n/2 around
the origin to “discover” the S-shapedness of the p’ = 0 manifold and how the
straight line 2’ = 0 goes across it. In this case p is the fast variable.

A slow-fast cycle will typically show (p, z) travelling counterclockwise along
" = 0 (the curve z = (1 — p)(v2 + p?)/p) up t0 (Pmax, Zmax), then jumping
horizontally to the descending part of the same curve, then descending to the
POoint (Pmin, Zmin), Where a new horizontal track is traversed, and so on (Figure
6). See Verhulst (1990).

According to the Hopf bifurcation theorem, the amplitude of the limit cycle

created when an stable spiral points splits into an unstable one and a stable
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cycle grows as the pair of bifurcation parameters (w, v) crosses transversally the
bifurcation set I's_.z into the region Qy. Therefore, any sensible analysis will
track the parameter values (w,v) € Sy in such a way that the gradient of the
amplitude is maximum. The numerical experiments show that this is the case
for the right corner of Qj; this means that v must be small —grazers are soon
satiated— and w rather large —the nonlinear rate yRmay is smaller than the linear

decay rate u.

5 Conclusions and views

The model considered in this paper stresses the role of various relationships
when interpreted from a biological viewpoint and accounts for several interesting
features of plankton dynamics.

v —or its dimensional counterpart a— controls how fast predators, . e. zoo-
plankton, are satiated: Small values of the parameter correspond with fast
satiation. From the Oceanography viewpoint, a small # can correspond to a
stage where phytoplankton biomass grows quickly: a so-called “algal bloom”.
The other interesting parameter is w, it is a measure of the relative importance
of the linear decay rate of zooplankton and the maximum nonlinear rate of
zooplankton biomass creation out of phytoplankton. Both parameters span a
two-dimensional space where a feasible subset 2 of parameter pairs is obtained.
Moreover, there exists a bifurcation set —the curve I's_y — separating stable
spiral behaviour from unstable spiral behaviour and a stable limit cycle.

Therefore the Hopf bifurcation is a characteristic feature of this model mean-
ing that for small values of v and rather large values of w plankton can develop

stable oscillating patterns out of any initial distribution of phyto- and zoo-
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plankton. If v is very small and w ~ 1, the stable cycle shows a typical slow-fast
behaviour. Informally, this means that when predators are rapidly satiated and

their efficiency in transforming prey into predator biomass is not large enough

to balance the linear decay, sudden and dramatic changes can occur to both
components of the planktonic system. These results agree with the general
conclusions of Truscott (1995), exception made of the Hopf bifurcation stage.
Axn interesting point for further study is the introduction of periodic be-
haviour in some of the model parameters. Periodic upwellings controlled by
variations in the depth of the thermocline —as in the EN phase of ENSO- can
be represented by & modulation like v = v(t) with v(¢) = v(t + T'), where
the “only” difficulty is the determination of the period T. See Ferndindez and
Pacheco (2000) and references therein. In addition to that, upwellings usually
imply the appearance of predators external to the planktonic systems ~fish— that
can highly modify the dynamics and due to their mobility make it necessary, as

in Malchow (1994), to consider spatial distribution effects as well.
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FIGURES
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Figurezl:zThe manifolds p’ = 0 and z’ = 0. The curve has the equation
z:-(L——pl("—ﬂ’—l, with v = 0.1

P
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Figure 2: The curve in Fig. 1 and the graph of its derivative. Note the
characteristic hump due to the changing sign of the derivative.
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Figure 3: The feasible set Q2 for the existence of a singular point in the first
orthant. The limiting curve has the equation v = /1 — 1
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Figure 4: The feasible region in Fig. 3, divided into three components.
The stability type of the singular point (p*, z*)} is the same for (w,v) in each
region. The curve I's_ g is the bifurcation set for Hopf bifurcations.
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Figure 5: Phase plane for v = 0.05 and w = 0.95. Shown are the stable
cycle and the unstable spiral point (1), with coordinates {0.22,0.18)
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Figure 6:The slow-fast cycle of phytoplankton for v = 0.05 and w = 0.95.

Note the typical shape of the wavetrain.
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