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Abstract 

The existence of Hopf bifurcations and slow-fast cycles in the dynam- 

ics of a model for the interaction between phyto- and zooplankton is con- 

sidered. A sensible and easily interpretable dimensionless version of the 

model is presented, foliowed by a numerical bifurcation snalysis in a twc- 

dimensional parameter space. The biological meaning of the parameters 

and qualitative features in phase space are stresed. 
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1 Introduction 

1 .  the open sea, plankton populations live in an ever-changing enWonment 

where equilibrium situations are the exception rather than the rule. Quite 

often, sudden and dramatic variations in biomass happen due to the interna1 

mechanisms that rule the behaviour of the planktonic components. 

Therefore, it is natural to look for models of plankton dynamics able to 

accowzt for the onset of oscdiations of various classes; among them, the slow- 

fast dynamics related to excitable vsriables is frequently observed in natural 

environments. There is no need of formulating complicated models: Even fairly 

easy mes can account for very rích dynamics. 

In this paper, as in Tsuscott (1995), plankton is divided into only two classes, 

phytoplankton and zooplankton, and they stand in a prey-predator relation- 

ship. See aiso Steele and Henderson (1992). p( t )  and z ( t )  s h d  represent the 

spatiaiiy averaged phyto- and zooplankton biomasses, repectively. Ebth clases 

are related to each other through grazing,' by which biomass is transferred from 

phytoplankton to mplankton. In the absence of grazing, the time evolution 

of phytoplankton is modeled by a logistic Iaw with growth rate r and can-ying 

capacity k: 

Grazing is introduced as a Holling III interaction term: 

thk means that for large p the wnsumption rate of phytoplankton per unit of 

grazer biomass tends to a saturation value R,,,,. cr is the socalled semisat- 



uration constant, which is a mettsure of how fast the grazing term becomes 

asymptotically constant: The closer a is to 0, the faster is &, approached. 

On the other hand, the dynamics of z is a linear one in the absence of p h y b  

plankton: 2 = -p, and the positive grazing effect is obtained by adding the 

grazing term in the p dynamics times some effectivity coefficient 7, a parameter 

that can embody the delay effect of the biomass transfer from phytoplankton 

into zooplankton. The above considerations are summed up in the ODE model: 

The aims of this paper are: 

a) To present a different dimensionless version of the ODE rnodel where 

parameters are easily interpreted from a biological viewpoint. 

b) To deveiop a bi icat ion analysis ieading to the understuding of the 

plankton dynamics through Hopf b i ca t ions  and then to slm-fast cycles. Hopf 

biications are one of the most employed tools in describ'ing the onset of oscil- 

lations in many systems, ranging from mechanical to biological to social ones. 

See Fernhdez and Pacheco (2001); Pacheco et al. (1997). 

c)  To obtain further insight of the biological interpretations of the model. 

2 Qualitative analysis of the model 

2.1 Adimensionalization 

Obtaining dimensionless forrns for the equations is a primary task before em- 

barking on further analyses in any model study. As a rule, equations can be 
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written in simpler forms, the number of parameters is reduced, and the remain- 

ing ones are found to be easily interpretable combinations of the origínal ones. 

The procedure is not unique and usually units must be ca.refully chasen. A 

mast interesting discussion can be found in Fowler (1997), the standard te&- 

nique is explained in EdeIstein-Keshet (1988), and many interesting examples 

are described in Murray (1989). 

In this case a nice dimensionless version of the model can be obtained by 

scaling the variables 

with the new units: 

This choice is different from the one proposed in Truscott (1995), and arnounts 

to using the Linear relaxation time snd the carrying capacity of phytoplankton 

as new time and phytoplankton biomass units. The zooplankton biomass unit is 

T 
simply the ñxed frsction of k @ven by the dimensionless quotient - reiating 

%, 
the linear growth rate of phytoplankton and the rnaximum consumption rate 

per unit grazer. By piugging these values into the equations and dropping the 

asterisks of the new mriables, the model is written in the simpler form: 

The original six constants are reduced to only three non-dimensional ones: 



a 
where v = - expreses the semisaturation constant cr as a fraction of the carry- 

k 

ing capacity k, 6 = is the quotient of the iinear growth rates of both species, 

L* and @ = -7 is the analogue of 7 -note that the factor is the inverse fraction 
T 

of the one used to dehne the zooplankton unit. Actuaíly, f i  plays no role in the 

6 
analyses to foiiow; instead, the dunensionless wmbination w = - is introduced 

P 
for the sake of simplicity, notationai wnvenience, and interpretability. It ic 

interesthg to obseme that w measures how large the linear decay rate p of zoo- 

plankton is with respect to the maximum rate y&, o£ zooplankton biomasc 

creation out of phytoplankton. This remark wiii often be used in the sequel. 

2.2 Singular points and their stability 

For any initiai wndition (po, zo) in the first orthant of the phase plane, the 

wrrespondmg orbit never leaves it, for it foiiows hom the model construction 

that both the paxk and the z-axis are trajectories of the system. The analysis 

is therefore restricted to this a ra .  

The manifold z' = O is the union of the paxis and the line 

while the p' = O manifold is formed by the z-axis and the c w e ,  asymptotic to 

the r-ax3 when p -+ O, debed  by the equation 

The above equations show immediately that two conditions must be fuifiUed 

for the system to have a singular point interior to the first orthant: 



the other only two s@ar points beiig (0,O) and (1,O) for any choice of the 

parameter values. Note also the equivaleme 

It is straightforward to show that (0,O) is a saddle point whoce stable and 

unstable manifolds are the z-axis snd the paxk respectively . The point (1, O) 

is aiso a saddle, point with the paxis as stable manifold -stated simply, this 

means that the restricted dynamics is given by a logistic-, while the unstable 

manifold is locally given by the curve z = (1 - p)(G +&/p .  

Once the two conditions w < 1 and p < 1 are met, the singular point 

(Figure 1): 

The reiationship between v and w gmm the stability of this singular point, and 

in case there shodd exist an stability shift for some paír(s) (w, u) ,  a bifurcation 

problem must be considered. This is the aim of the next section. 

2.3 A bifurcation analysis 

2.3.1 The shape of t h e  p' = O manifold 

Rom a geometric viewpoint the stability of the singuiar point depends on the 

shape of the c w e d  component of the p' = O manifold, the curve 



P 

Its slope -- Y' + p 2  + 2(1 - p )  depends (Figure 2) on the parameter v. For iarge 
9 

v the slope is always negative and the curve descends monotonidy from +m 

to O along the intervai (O, 11. This is easily proved: Writing 

3 
in the form 2p+- > 1, it foilows triviaily that it sufñces to take u large enough 

p2 
for the inequahty to hold. To quanf.rfy how large v must be, wnsider that the 

2 vz 
minimum m of the expression 2p + - occurs when p, satisfies 2 - 2- = 0 ,  

p2 p3, 
v'l 

or equivalently p, = v2I3. Therefore m > 1 if 2213 + - = 3v2I3 > 1, or 
d 1 3  

> v,it = = (1.19245 ... V 27 

For u < Unit, two extrema -a minimum and a m h u m -  appear at the 

curve is positive in the i n t e d  (p,,,p,,) , its graph shows a characteristic 

hump form, and the linear stability analysis of the point (p*, r*) depends on 

whether p* E Cp,,,p,,) or not. To s e  when this is the case, write: 

to obtain the following estimates for w: 

that must be satisfied (remember that v < U,U) for the singular point (p*, z * )  

to be in the "uphill" part of the hump, to the left of the maximum. When this is 

the case, an annular closed region around the singular point can be determined 



in phase space such that any orbit entering it wiii remah there forever, so the 

Poincaré-Bendixson theorem is applied and a limit cycle exists. See Arrowsrnith 

and Place (1994); Verhulst (1990). 

2.3.2 Numerical analyses in t he  (w, u )  plane 

The model dynamics depends essentialiy on the two parameters w and v, and 

the bifurcation analysis amounts to study those sets of pairs (w,  w) for which 

the qualitative aspect of the phase portrait is the same. in this model no simple 

ex~ressions for pmin and p,, can be obtained for general v, so the following step 

will be the nurnerical analysis of some gwmetrica! s h a p  i~ the (LJ, u )  p!me. 

Remember that the conditions for the existente of a sinodar point in the 

k s t  orthant amount to 

so the set of feasible pairs in the ( w ,  u) plane is the open set R limited by the 

positive u-&, the positive u-axis and the graph of v = - - 1 (Figure 3). J: 
By establishing a grid over fl and computing the eigendues X(w, u )  of the 

jacobian matrix at the grid points, the transition from two negative real eigen- 

vaiues to negative real part complex ones, and ftom these to positive real part 

complex ones can be tracked across two parabola-Like c u n e s  that can be de- 

tennined by fitting adequate trigonometric polynomials to the observed points. 

This procedure cm be easily progammed in htathematica or Maple. 

Therefore, S1 is union of three open regions and the two parabola-like curves 

separating theml, rN-S and rsTH. I'N-s runs from the origin to  (1,O) with 

' Here N rneans "node", S, %piraln, and H, "Hopf" . 
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a single maJamum at (0.4,0.8); rs-H runs hom (O.j,O) to (1 ,O)  and its single 

maximum is a t  @.75,G.i9). The three open regions are (Figure 4): 

flN, above I's-H: For (w, v) in this region, (p*, z*) is a stable node (two neg- 

ative real eigenvalues) whose attraction basin is the interior of the h i t  orthant. 

Os, limited by both I ' ~ J - ~ ,  i?s-H , and the w-axis: For (u, u)  in this region, 

(p', z*)  is a stable spiral point (negative real part of the complex eigenvalues) 

and, again, the attraction basin is the interior of the h s t  orthant. If (p*, z*)  E 

I 'N-S,  it behaves as  a degenerate node. 

QH, below I's-H: For (w, v) in this region, (p*, z*) is a unstable spiral 

point surrounded by a stable h i t  cycle. Then, rs-H is the bifurcation set 

of a transcritical Hopf bifurcation: When crossing it, the stable spiral point 

@', z*) spLitS into an unstable spiral point and a stable limit cycle surrounding 

it. The attraction basin is the interior of the ñrst orthant as well. Numerical 

computations show that the Hopf bifurcation condition (see Arrowsmith and 

Place (1994)) 

3 Biological interpretation 

To obtain a sensible explanation in biological terms of the above discussion the 

definition and interpretation of the parameten w and u must be remembered: 



w expresses the relationship between the linear decay rate p of zooplankton and 

the maximum rate 7&, of zooplankton biomass creation out of phytoplank- 

ton. u indicates how fast the maximum grazing rate is approached: Actually, 

it is a measure of how much phytoplankton is needed for grazers to reach a 

satiated state. Small values indicate rapid satiation, while larger values are the 

signal of a harder struggle for d t e n c e .  

Given that for the existence of ($,t.*) it is required that w < 1, i.e. 

p < y&,, small values of w mean that the nonluieíu " b i h n  rate y&, 

is much larger than the linear decay rate p. Therefore, if u is smd,  i.e. the 

maxhum grazing rate h& is rapidly approached, the net balance is positive 

for zooplankton growth. It must be noted that for large u the intenal of feasible 

w values becomes s m d  quite rapidly: For instance, when v = 1 the intenai is 

(0,1/2). Should any w > 1/2 be chosen, the model dynamics shows that the 

populations (p, z) -+ (1, O), that is, zooplankton disappears as phytoplankton 

settles cornfortably at its carrying capacity. 

Summing up, the biology underlying the model is characterized by the wn- 

fiict between "v, or how rnuch phytoplankton is needed for grazers to recrch a 

satiated staten and "w, or how eficient is zooplankton in the tmnsfonnation of 

phytoplankton biornass into its oum b i o w s " .  This is reflected in the foiiowing, 

purely qualitative table: 

Y\W 

sma3 

large 

small 

Stabie popuiations 

Stabie populations 

large 

SycGc Delnaviour 

Zooplankton extinction 



It must be observed that the analysis in 2.3.2 shows that stable populations 

may be approached either directly (stable nodes) or after decaying osciiiations 

(stable spird points). 

4 Slow-fast cycles 

Roughly speaking, a slow-fast cycle is a cycle along which the travelling speed 

of one state vaxiable is dramatically altered on some parts of the cycle, and this 

variable is called a ''fast" variable. The other state variable is the "slow" one. 

The graph of the time evolution of the fast variable shows a typical oscillatory 

pztt-: A ir- stwp h-mps wjth s;oK:y &--7MU&iig ;- ($'igne 

5). 

Inspection of the relative position of the p' = O and z' = O manifolds reveals 

a slm-fast cycle situation if one of them -the one corresponding to the fast 

variable- is an S-shaped curve and the other one crosses it transversally through 

some point in the central part of the S. This is exactly the case of the model for 

(w, u) E RH: To see it, just rotate the phase plane by an angle of a/2 around 

the origin to ~'discovern the S-shapedness of the p' = O manifold and how the 

straight line t.' = O goes amos  it. ID. this case p is the fast variable. 

A slow-fast cycle will typically show ( p ,  z) t r avehg  counterclockwise along 

p1 = O (the curve z = (1 - p)(v2 + p2)/p) up to (pmax,z,,), then jumping 

horizontaliy to the descending part of the same c w e ,  then descending to the 

point (p,in, zmin), where a new horizontal track is traversed, and so on (Figure 

6). See Verhulst (1990). 

According to the Hopf bifurcation theorem, the amplitude of the h i t  cycle 

created when an stable spiral points spiits into an unstable one and a stable 
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cycle grows as the pair of bifurcation parameters (w, u) crosses transversally the 

bifurcation set r s - H  into the region RH. Therefore, any sensible analysis wili 

track the parameter values (w, v) E OH in such a way that the gradient of the 

amplitude is maximum. The numerical experirnents show that this is the case 

for the right comer of SIH; this means that v must be small - - r azas  are soon 

satiated- and w rather large -the nonlinear rate y&, is smaiier than the linear 

decay rate p. 

5 Conclusions and views 

The model considered in this paper stresses the role of various relationships 

when interpreted from a biological viewpoint and accounts for several interesting 

features of plankton dynamics. 

u -or its dimensional counterpart a- controls how fast predators, i. e. wo- 

plankton, are satiated: Smail values of the parameter correspond with fast 

satiation. Fkom the Oceanography viewpoint, a smaii v can correspond to a 

stage where phytoplankton biomass grows quickly: a so-called "alga1 bloom". 

The other interesting parameter is w, it is a measure of the relative importante 

of the linear decay rate of zooplankton and the maximum nonlinear rate of 

zooplankton biomass creation out of phytoplankton. Both parameters span a 

two-dimensional space where a feasible subset R of parameter pairs is obtained. 

Moreover, there exists a bifurcation set -the curve rs-H - separating stable 

spirai behaviour from unstable spiral behaviour and a stabie h i t  cycie. 

Therefore the Hopf bifurcation is a characteristic feature of this model mean- 

ing that for smaii values of v and rather large values of w plankton can develop 

stable oscillating patterns out of any initial distribution of phyto- and zoo- 
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plankton. If u is very s m d  and w Ñ 1, the stable cycle shows a typical slow-fast 

'behaviour. I n i o d y ,  tiYs means that wben preciaiors are rapiciiy %ti&& md 

their efficiency in transforming prey into predator biomass is not large enough 

to balance the linear decay, sudden and dramatic changa can occur to both 

components of the planktonic system. These resuits agree with the general. 

conclusions of Truscott (1995); exception made of the Hopf b i c a t i o n  stage. 

An interesting point for further study is the introduction of periodic be- 

haviour in some of the model parameters. Periodic upwehgs controlled by 

variations in the depth of the thennocline -as in the EN phase o£ ENSO- can 

be represented by a modulation like v = v(t) with v(t)  = v(t + T), where 

the "only" difficuity is the determination of the period T. See Fernández ami 

Pacheco (2000) and references therein. In addition to that, upwellings u sudy  

imply the appearance o£ predators extemal to the planktonic systems -fish- that 

can highiy modify the d~mamics and due to their mobility make it necessary, as 

in Malchow (1994), to consider spatial distribution effects as well. 
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FIGURES 

Figure 1: The manifolds p' = O and 2' = O. The curve has the equation 
= p - p ) ( v 2 + p Z )  

P , with u = 0.1 

Figure 2: The curve in Fig. 1 and the graph of its derivative. Note the 
characteristic hump due to the changing sign of the derivative. 



Figure 3: The feasible set R for the evistence of a singuiar point in the first 

orthant. The limiting c m  has the equation u = JF 

Figure 4: The feasible region in Fig. 3, divided into three components. 
The stability type of the singular point @*, z*)  is the same for (w, u) in ea& 
region. The curve r s - ~  is the b i c a t i o n  set for Hopf bifurcations. 



Phase Plane 

1 

Figure 5: Phase piane for u = 0.05 and w = 0.95. S h m  are the stable 
cycle and the unstable spiral point (l), with coordinates (0.22,0.18) 

Phytoplankton vs. time 

i 

time 

Figure 6:The siow-fast cycle of phytoplankton for v = 0.05 and w = 0.95. 
Note the typical shape of the wavetrain. 
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