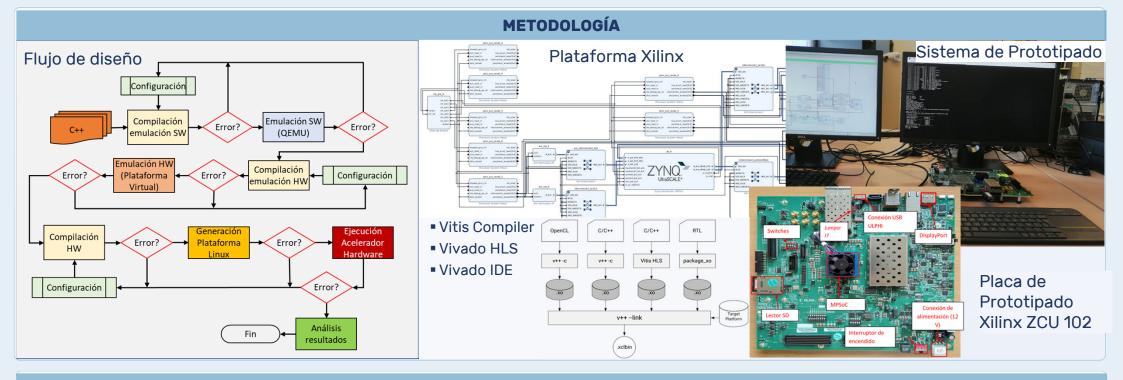
Diseño de un acelerador *hardware* FPGA para aplicaciones de *machine learning* usando plataforma virtual

Autor: D. Mario D. Guanche Hernández

Tutores: Dr. Pedro Pérez Carballo^{1,2}, Dña. Sonia Raquel León Martín²

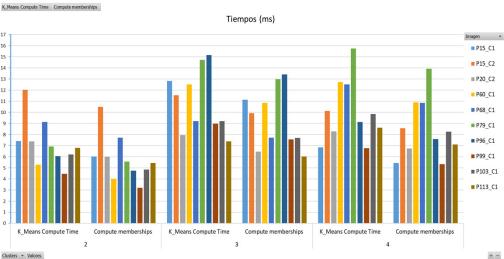
GITT (Sistemas Electrónicos), Diciembre 2020

¹EITE (ULPGC) - ²IUMA (ULPGC)

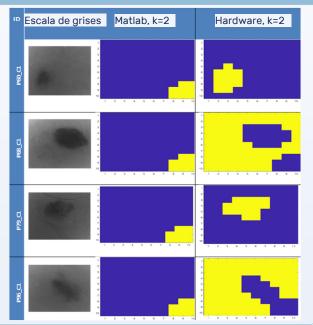


INTRODUCCIÓN

- Machine learning suele requerir de una carga computacional elevada, pero paralelizable, por lo que el uso de aceleradores hardware basados en FPGAs resulta idóneo.
- La complejidad del diseño precisa de metodologías de diseño avanzadas que, desde C/C++, realizan la implementación del acelerador hardware. El uso de plataformas virtuales facilita el desarrollo.
- Se aplica la aceleración hardware a una clasificación mediante kmeans de imágenes hiperespectrales de cáncer de piel utilizando MPSoC Xilinx Zynq UltraScale+.


OBJETIVOS

- 01. Estudiar la arquitectura del dispositivo MPSoC FPGA
 Zynq Ultrascale+ de Xilinx y sus principales bloques.
- 02. Estudiar diferentes alternativas de **clasificación** de *machine learning*.
- 03. Implementar una plataforma virtual para Zynq UltraScale+.
- 04. **Simula**r el sistema de clasificación mediante *machine learning* en la plataforma virtual y estudiar las **prestaciones** de la arquitectura.
- 05. Evaluar el diseño con aplicaciones reales.


RESULTADOS

Tiempos de ejecución sobre el acelerador hardware del banco de imágenes de cáncer de piel (ms) para la computación total y la elección de los miembros del kernel.

- Comparación de resultados con Matlab usando k=2 para imágenes hiperespectrales de cáncer de piel.
- Mejoras del acelerador Hardware

Opción	Compute Membership	K-means Compute Time
Emulación software	1 674.28	1 765.00
Hardware	7.27	9.35
Mejora (Hw/Sw)	x230.30	x188.77

CONCLUSIONES

- Se ha realizado el diseño de un acelerador hardware basado en MPSoC FPGA a partir del modelo algorítmico C++ usando técnicas de diseño de alto nivel.
- Se utiliza el entorno Vitis de Xilinx para realizar la compilación del diseño y realizar su prototipado sobre una placa Xilinx ZCU102 que utiliza un dispositivo MPSoC Zyng UltraScale+.
- Se ha aplicado la metodología de diseño y prototipado para la aceleración hardware de un algoritmo kmeans.
- Los resultados aplicados a distintas imágenes hiperespectrales de cáncer de piel demuestran que se consigue un factor de aceleración de x189 para el computo del algoritmo, obteniendo su clasificación en menos de 10 ms.

REFERENCIAS

- M. Kubat, An Introduction to Machine Learning. Springer International Publishing, 2015
- 2. Xilinx Inc, «ZCU102 Evaluation Board User Guide», 2019
- 3. Xilinx Inc, «Zynq UltraScale+ Device Technical Reference Manual», 2020
- 4. Xilinx Inc, «Vitis Unified Software Platform Documentation Application Acceleration Development», 2020